cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342320 Integers k such that Euler(k, 1) is an integer multiple of Bernoulli(k + 1, 1).

Original entry on oeis.org

0, 1, 5, 17, 41, 53, 125, 161, 293, 341, 377, 485, 881, 1025, 1133, 1313, 1457, 1805, 2057, 2393, 2645, 3077, 3401, 3941, 4373, 5333, 5417, 6173, 6497, 7181, 7937, 9197, 9233, 10205, 11825, 12641, 13121, 14153, 14405, 16001, 16253, 16757, 18521, 19493, 21545
Offset: 0

Views

Author

Peter Luschny, Mar 24 2021

Keywords

Examples

			Let E(n) = Euler(n, 1) and B(n) = Bernoulli(n, 1).
2*E(0)  = 4*B(1) = 2;
2*E(1)  = 6*B(2) = 1;
2*E(5)  = 42*B(6) = 1;
2*E(17) = 58254*B(18) = 3202291;
2*E(41) = 418861572486*B(42) = 352552873457246307069012458671.
		

Crossrefs

a(n) = A015942(n-1)-1 for n>=2, (a(n)+1)/2 = A014945(n) for n>=1.
a(n) = A014741(n+1) - 1. - Vaclav Kotesovec, Mar 24 2021
Cf. A341759 (subsequence of primes), A198631/A006519 (Euler), A164555/A027642 (Bernoulli).

Programs

  • Mathematica
    Join[{0}, Select[Range[1000], BernoulliB[#+1, 1] != 0 && IntegerQ[EulerE[#, 1]/BernoulliB[#+1, 1]] &]] (* Vaclav Kotesovec, Mar 24 2021 *)
    Select[Range[100000], IntegerQ[(2*(-1 + 2^#))/#] & ] - 1 (* Vaclav Kotesovec, Mar 24 2021 *)
    L342320 := Select[Range[0, 10000], Divisible[2^(# + 2) - 2, # + 1] &];
    A342320[n_] := L342320[[n + 1]] (* Peter Luschny, Apr 10 2021 *)

Formula

Numbers k such that k + 1 divides 2^(k + 2) - 2. - Vaclav Kotesovec, Mar 24 2021