This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342321 #17 Aug 10 2024 05:10:39 %S A342321 1,0,1,0,-1,2,0,1,-4,3,0,-3,22,-33,12,0,1,-13,33,-26,5,0,-5,114,-453, %T A342321 604,-285,30,0,5,-200,1191,-2416,1985,-600,35,0,-35,2470,-21465,62476, %U A342321 -78095,42930,-8645,280,0,14,-1757,21912,-88234,156190,-132351,51128,-7028,126 %N A342321 T(n, k) = A343277(n)*[x^k] p(n, x) where p(n, x) = (1/(n+1))*Sum_{k=0..n} (-1)^k*E1(n, k)*x^(n - k) / binomial(n, k), and E1(n, k) are the Eulerian numbers A123125. Triangle read by rows, for 0 <= k <= n. %C A342321 Conjecture: For even n >= 6 p(n, x)/x and for odd n >= 3 p(n, x)/(x^2 - x) is irreducible. %H A342321 Peter Luschny, <a href="/A342321/a342321.jpg">Illustration of the polynomials.</a> %H A342321 Peter Luschny, <a href="https://github.com/PeterLuschny/EulerianSecondOrderNumbers/blob/main/EulberianPolynomials.ipynb">Eulberian polynomials</a>, A notebook companion to A342321 and A356601, 2022. %F A342321 An alternative representation of the sequence of rational polynomials is: %F A342321 p(n, x) = Sum_{k=1..n} x^k*k!*Sum_{j=0..k} (-1)^(n-j)*Stirling2(n, j)/((k - j)!(n - j + 1)*binomial(n + 1, j)) for n >= 1 and p(0, x) = 1. %F A342321 (Sum_{k = 0..n} T(n, k)) / A343277(n) = Bernoulli(n, 1). %e A342321 Triangle starts: %e A342321 [n] T(n, k) A343277(n) %e A342321 ---------------------------------------------------------- %e A342321 [0] 1; [1] %e A342321 [1] 0, 1; [2] %e A342321 [2] 0, -1, 2; [6] %e A342321 [3] 0, 1, -4, 3; [12] %e A342321 [4] 0, -3, 22, -33, 12; [60] %e A342321 [5] 0, 1, -13, 33, -26, 5; [30] %e A342321 [6] 0, -5, 114, -453, 604, -285, 30; [210] %e A342321 [7] 0, 5, -200, 1191, -2416, 1985, -600, 35; [280] %e A342321 . %e A342321 The coefficients of the polynomials p(n, x) = (Sum_{k = 0..n} T(n, k) x^k) / A343277(n) for the first few n: %e A342321 [0] 1; %e A342321 [1] 0, 1/2; %e A342321 [2] 0, -1/6, 1/3; %e A342321 [3] 0, 1/12, -1/3, 1/4; %e A342321 [4] 0, -1/20, 11/30, -11/20, 1/5; %e A342321 [5] 0, 1/30, -13/30, 11/10, -13/15, 1/6. %p A342321 CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)): %p A342321 E1 := (n, k) -> combinat:-eulerian1(n, k): %p A342321 poly := n -> (1/(n+1))*add((-1)^k*E1(n,k)*x^(n-k)/binomial(n,k), k=0..n): %p A342321 Trow := n -> denom(poly(n))*CoeffList(poly(n)): seq(Trow(n), n = 0..9); %t A342321 Poly342321[n_, x_] := If[n == 0, 1, Sum[x^k*k!*Sum[(-1)^(n - j)*StirlingS2[n, j] /((k - j)!(n - j + 1) Binomial[n + 1, j]), {j, 0, k}], {k, 1, n}]]; %t A342321 Table[A343277[n] CoefficientList[Poly342321[n, x], x][[k+1]], {n, 0, 9}, {k, 0, n}] // Flatten %Y A342321 Cf. A343277, A123125. %Y A342321 Sequences of rational polynomials p(n, x) with p(n, 1) = Bernoulli(n, 1): %Y A342321 A342312/A342313, A342321/A342320, A342322/A064538. %K A342321 sign,tabl,frac %O A342321 0,6 %A A342321 _Peter Luschny_, Mar 09 2021