A342322 T(n, k) = A064538(n)*[x^k] p(n, x) where p(n, x) = 1 + Sum_{k = 0..n-1} binomial[n, k]*p(k, 1)* ((x - 1)^(n - k) - 1) / (n - k + 1) for n >= 1 and p(0, x) = 1. Triangle read by rows, for 0 <= k <= n.
1, 0, 1, 0, -1, 2, 0, 0, -1, 1, 0, 1, 1, -9, 6, 0, 0, 1, 1, -4, 2, 0, -1, -1, 6, 6, -15, 6, 0, 0, -2, -2, 5, 5, -9, 3, 0, 3, 3, -17, -17, 25, 25, -35, 10, 0, 0, 3, 3, -7, -7, 7, 7, -8, 2, 0, -5, -5, 28, 28, -38, -38, 28, 28, -27, 6, 0, 0, -10, -10, 23, 23, -21, -21, 12, 12, -10, 2
Offset: 0
Examples
p(n, x) = (Sum_{k = 0..n} T(n, k) x^k) / A064538(n). [n] T(n, k) A064538(n) --------------------------------------------------- [0] 1, [ 1] [1] 0, 1, [ 2] [2] 0, -1, 2, [ 6] [3] 0, 0, -1, 1, [ 4] [4] 0, 1, 1, -9, 6, [30] [5] 0, 0, 1, 1, -4, 2, [12] [6] 0, -1, -1, 6, 6, -15, 6, [42] [7] 0, 0, -2, -2, 5, 5, -9, 3, [24] [8] 0, 3, 3, -17, -17, 25, 25, -35, 10, [90] [9] 0, 0, 3, 3, -7, -7, 7, 7, -8, 2. [20]
Crossrefs
Cf. A064538.
Programs
-
Maple
CoeffList := p -> [op(PolynomialTools:-CoefficientList(factor(p), x))]: p := n -> add(binomial(n+1,k+1)*bernoulli(n-k, 1)*(x-1)^k, k=0..n)/(n+1): seq(print(denom(p(n))*CoeffList(p(n))), n=0..9);
-
Mathematica
(* Uses the function A064538. *) p[n_, x_] := p[n, x] = If[n == 0, 1, 1 + Sum[Binomial[n, k] p[k, 1] ((x - 1)^(n - k) - 1) / (n - k + 1), {k, 0, n-1}]]; Table[A064538[n] CoefficientList[p[n, x], x][[k+1]], {n, 0, 9}, {k, 0, n}] // Flatten
Formula
(Sum_{k = 0..n} T(n, k)) / A064538(n) = Bernoulli(n, 1).