This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342323 #20 Feb 09 2024 10:36:22 %S A342323 1,1,1,1,2,1,1,1,3,1,1,2,1,2,1,1,1,1,1,5,1,1,2,3,2,1,1,1,1,1,1,1,1,3, %T A342323 7,1,1,2,1,2,1,1,1,2,1,1,1,3,1,1,1,1,1,3,1,1,2,1,2,5,3,1,2,1,1,1,1,1, %U A342323 1,1,1,1,1,1,1,1,11,1,1,2,3,2,1,1,1,2,3,1,1,1,1 %N A342323 Square array read by ascending antidiagonals: T(n,k) = gcd(k, Phi_k(n)), where Phi_k is the k-th cyclotomic polynomial, n >= 0, k >= 1. %C A342323 This is the same table as A342255 but with offset 0. Therefore, the resulting sequences as flattened tables are different. The main entry is A342255. %H A342323 Jianing Song, <a href="/A342323/b342323.txt">Table of n, a(n) for n = 0..5049</a> (the first 100 antidiagonals) %F A342323 For k > 1, let p be the largest prime factor of k, then T(n,k) = p if p does not divide n and k = p^e*ord(p,n) for some e > 0, where ord(p,n) is the multiplicative order of n modulo p. %e A342323 Table begins: %e A342323 n\k | 1 2 3 4 5 6 7 8 9 10 11 12 %e A342323 ------------------------------------------ %e A342323 0 | 1 1 1 1 1 1 1 1 1 1 1 1 %e A342323 1 | 1 2 3 2 5 1 7 2 3 1 11 1 %e A342323 2 | 1 1 1 1 1 3 1 1 1 1 1 1 %e A342323 3 | 1 2 1 2 1 1 1 2 1 1 1 1 %e A342323 4 | 1 1 3 1 1 1 1 1 3 5 1 1 %e A342323 5 | 1 2 1 2 1 3 1 2 1 1 1 1 %e A342323 6 | 1 1 1 1 5 1 1 1 1 1 1 1 %e A342323 7 | 1 2 3 2 1 1 1 2 3 1 1 1 %e A342323 8 | 1 1 1 1 1 3 7 1 1 1 1 1 %e A342323 9 | 1 2 1 2 1 1 1 2 1 5 1 1 %e A342323 10 | 1 1 3 1 1 1 1 1 3 1 1 1 %e A342323 11 | 1 2 1 2 5 3 1 2 1 1 1 1 %e A342323 12 | 1 1 1 1 1 1 1 1 1 1 11 1 %t A342323 A342323[n_, k_] := GCD[k, Cyclotomic[k, n]]; %t A342323 Table[A342323[n-k+1, k], {n, 0, 15}, {k, n+1}] (* _Paolo Xausa_, Feb 09 2024 *) %o A342323 (PARI) T(n,k) = gcd(k, polcyclo(k,n)) %Y A342323 Cf. A342255. %K A342323 nonn,easy,tabl %O A342323 0,5 %A A342323 _Jianing Song_, Mar 08 2021