A342328 Number of sets in the geometry determined by the Hausdorff metric at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 4) missing three edges, where all three removed edges are incident to different vertices in the 6-point set but exactly two removed edges are incident to the same vertex in the other set.
1068475, 89633839, 6458329435, 433976684431, 28211055010555, 1804746233554159, 114556965257054875, 7243790885015626831, 457188176014823960635, 28828588756092946562479, 1816999192589895468925915, 114495695622871975031439631
Offset: 4
Links
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Index entries for linear recurrences with constant coefficients, signature (120,-4593,69688,-428787,978768,-615195).
Crossrefs
Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.
Programs
-
Mathematica
Array[465*63^(# - 2) - 982*31^(# - 2) + 807*15^(# - 2) - 316*7^(# - 2) + 56*3^(# - 2) - 3 &, 12, 4] (* Michael De Vlieger, Mar 19 2021 *)
Formula
a(n) = 465*63^(n-2) - 982*31^(n-2) + 807*15^(n-2) - 316*7^(n-2) + 56*3^(n-2) - 3.
Comments