This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342332 #23 Jun 09 2021 16:25:17 %S A342332 1,1,1,1,3,4,4,7,12,17,23,34,51,75,111,164,239,350,520,767,1123,1652, %T A342332 2439,3587,5263,7745,11411,16789,24695,36347,53489,78686,115779, %U A342332 170390,250711,368866,542783,798713,1175208,1729189,2544462,3744077,5509068,8106165,11927785,17550956,25824938,37999743,55914293,82274088,121060721 %N A342332 Number of compositions of n with all adjacent parts (x, y) satisfying x > 2y or y > 2x. %H A342332 Alois P. Heinz, <a href="/A342332/b342332.txt">Table of n, a(n) for n = 0..2500</a> %e A342332 The a(1) = 1 through a(9) = 17 compositions: %e A342332 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A342332 (13) (14) (15) (16) (17) (18) %e A342332 (31) (41) (51) (25) (26) (27) %e A342332 (131) (141) (52) (62) (72) %e A342332 (61) (71) (81) %e A342332 (151) (152) (162) %e A342332 (313) (161) (171) %e A342332 (251) (252) %e A342332 (314) (261) %e A342332 (413) (315) %e A342332 (1313) (414) %e A342332 (3131) (513) %e A342332 (1314) %e A342332 (1413) %e A342332 (3141) %e A342332 (4131) %e A342332 (13131) %p A342332 b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j), %p A342332 j=select(x-> i=0 or x>2*i or i>2*x , {$1..n}))) %p A342332 end: %p A342332 a:= n-> b(n, 0): %p A342332 seq(a(n), n=0..50); # _Alois P. Heinz_, May 24 2021 %t A342332 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]>2*#[[i-1]]||#[[i-1]]>2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}] %t A342332 (* Second program: *) %t A342332 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, Select[Range[n], i == 0 || # > 2 i || i > 2 # &]}]]; %t A342332 a[n_] := b[n, 0]; %t A342332 a /@ Range[0, 50] (* _Jean-François Alcover_, Jun 09 2021, after _Alois P. Heinz_ *) %Y A342332 The unordered version (partitions) is A342098. %Y A342332 Reversing operators and changing 'or' into 'and' gives A342330 (strict: A342341). %Y A342332 The version allowing equality (i.e., non-strict relations) is A342333. %Y A342332 The version allowing partial equality is counted by A342334. %Y A342332 A000929 counts partitions with adjacent parts x >= 2y. %Y A342332 A002843 counts compositions with adjacent parts x <= 2y. %Y A342332 A154402 counts partitions with adjacent parts x = 2y. %Y A342332 A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342). %Y A342332 A274199 counts compositions with adjacent parts x < 2y. %Y A342332 A342094 counts partitions with adjacent parts x <= 2y (strict: A342095). %Y A342332 A342096 counts partitions without adjacent x >= 2y (strict: A342097). %Y A342332 A342331 counts compositions with adjacent parts x = 2y or y = 2x. %Y A342332 A342335 counts compositions with adjacent parts x >= 2y or y = 2x. %Y A342332 A342337 counts partitions with adjacent parts x = y or x = 2y. %Y A342332 A342338 counts compositions with adjacent parts x < 2y and y <= 2x. %Y A342332 Cf. A003114, A003242, A034296, A167606, A342083, A342084, A342087, A342191, A342336, A342340. %K A342332 nonn %O A342332 0,5 %A A342332 _Gus Wiseman_, Mar 10 2021 %E A342332 More terms from _Joerg Arndt_, Mar 12 2021