This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342339 #6 Mar 12 2021 09:13:21 %S A342339 1,2,3,4,5,6,7,8,9,11,12,13,16,17,18,19,21,23,24,25,27,29,31,32,36,37, %T A342339 41,42,43,47,48,49,53,54,59,61,63,64,65,67,71,72,73,79,81,83,84,89,96, %U A342339 97,101,103,107,108,109,113,121,125,126,127,128,131,133,137 %N A342339 Heinz numbers of the integer partitions counted by A342337, which have all adjacent parts (x, y) satisfying either x = y or x = 2y. %C A342339 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %e A342339 The sequence of terms together with their prime indices begins: %e A342339 1: {} 19: {8} 48: {1,1,1,1,2} %e A342339 2: {1} 21: {2,4} 49: {4,4} %e A342339 3: {2} 23: {9} 53: {16} %e A342339 4: {1,1} 24: {1,1,1,2} 54: {1,2,2,2} %e A342339 5: {3} 25: {3,3} 59: {17} %e A342339 6: {1,2} 27: {2,2,2} 61: {18} %e A342339 7: {4} 29: {10} 63: {2,2,4} %e A342339 8: {1,1,1} 31: {11} 64: {1,1,1,1,1,1} %e A342339 9: {2,2} 32: {1,1,1,1,1} 65: {3,6} %e A342339 11: {5} 36: {1,1,2,2} 67: {19} %e A342339 12: {1,1,2} 37: {12} 71: {20} %e A342339 13: {6} 41: {13} 72: {1,1,1,2,2} %e A342339 16: {1,1,1,1} 42: {1,2,4} 73: {21} %e A342339 17: {7} 43: {14} 79: {22} %e A342339 18: {1,2,2} 47: {15} 81: {2,2,2,2} %t A342339 Select[Range[100],With[{y=PrimePi/@First/@FactorInteger[#]},And@@Table[y[[i]]==y[[i-1]]||y[[i]]==2*y[[i-1]],{i,2,Length[y]}]]&] %Y A342339 The first condition alone gives A000961 (perfect powers). %Y A342339 The second condition alone is counted by A154402. %Y A342339 These partitions are counted by A342337. %Y A342339 A018819 counts partitions into powers of 2. %Y A342339 A000929 counts partitions with adjacent parts x >= 2y. %Y A342339 A002843 counts compositions with adjacent parts x <= 2y. %Y A342339 A045690 counts sets with maximum n in with adjacent elements y < 2x. %Y A342339 A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342). %Y A342339 A274199 counts compositions with adjacent parts x < 2y. %Y A342339 A342094 counts partitions with adjacent x <= 2y (strict: A342095). %Y A342339 A342096 counts partitions without adjacent x >= 2y (strict: A342097). %Y A342339 A342098 counts partitions with adjacent parts x > 2y. %Y A342339 A342330 counts compositions with x < 2y and y < 2x (strict: A342341). %Y A342339 A342331 counts compositions with adjacent parts x = 2y or y = 2x. %Y A342339 A342332 counts compositions with adjacent parts x > 2y or y > 2x. %Y A342339 A342333 counts compositions with adjacent parts x >= 2y or y >= 2x. %Y A342339 A342334 counts compositions with adjacent parts x >= 2y or y > 2x. %Y A342339 A342335 counts compositions with adjacent parts x >= 2y or y = 2x. %Y A342339 A342338 counts compositions with adjacent parts x < 2y and y <= 2x. %Y A342339 A342342 counts strict compositions with adjacent parts x <= 2y and y <= 2x. %Y A342339 Cf. A003114, A003242, A034296, A040039, A167606. A342083, A342084, A342087, A342191, A342336, A342339, A342340. %K A342339 nonn %O A342339 1,2 %A A342339 _Gus Wiseman_, Mar 11 2021