cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342339 Heinz numbers of the integer partitions counted by A342337, which have all adjacent parts (x, y) satisfying either x = y or x = 2y.

This page as a plain text file.
%I A342339 #6 Mar 12 2021 09:13:21
%S A342339 1,2,3,4,5,6,7,8,9,11,12,13,16,17,18,19,21,23,24,25,27,29,31,32,36,37,
%T A342339 41,42,43,47,48,49,53,54,59,61,63,64,65,67,71,72,73,79,81,83,84,89,96,
%U A342339 97,101,103,107,108,109,113,121,125,126,127,128,131,133,137
%N A342339 Heinz numbers of the integer partitions counted by A342337, which have all adjacent parts (x, y) satisfying either x = y or x = 2y.
%C A342339 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
%e A342339 The sequence of terms together with their prime indices begins:
%e A342339       1: {}            19: {8}             48: {1,1,1,1,2}
%e A342339       2: {1}           21: {2,4}           49: {4,4}
%e A342339       3: {2}           23: {9}             53: {16}
%e A342339       4: {1,1}         24: {1,1,1,2}       54: {1,2,2,2}
%e A342339       5: {3}           25: {3,3}           59: {17}
%e A342339       6: {1,2}         27: {2,2,2}         61: {18}
%e A342339       7: {4}           29: {10}            63: {2,2,4}
%e A342339       8: {1,1,1}       31: {11}            64: {1,1,1,1,1,1}
%e A342339       9: {2,2}         32: {1,1,1,1,1}     65: {3,6}
%e A342339      11: {5}           36: {1,1,2,2}       67: {19}
%e A342339      12: {1,1,2}       37: {12}            71: {20}
%e A342339      13: {6}           41: {13}            72: {1,1,1,2,2}
%e A342339      16: {1,1,1,1}     42: {1,2,4}         73: {21}
%e A342339      17: {7}           43: {14}            79: {22}
%e A342339      18: {1,2,2}       47: {15}            81: {2,2,2,2}
%t A342339 Select[Range[100],With[{y=PrimePi/@First/@FactorInteger[#]},And@@Table[y[[i]]==y[[i-1]]||y[[i]]==2*y[[i-1]],{i,2,Length[y]}]]&]
%Y A342339 The first condition alone gives A000961 (perfect powers).
%Y A342339 The second condition alone is counted by A154402.
%Y A342339 These partitions are counted by A342337.
%Y A342339 A018819 counts partitions into powers of 2.
%Y A342339 A000929 counts partitions with adjacent parts x >= 2y.
%Y A342339 A002843 counts compositions with adjacent parts x <= 2y.
%Y A342339 A045690 counts sets with maximum n in with adjacent elements y < 2x.
%Y A342339 A224957 counts compositions with x <= 2y and y <= 2x (strict: A342342).
%Y A342339 A274199 counts compositions with adjacent parts x < 2y.
%Y A342339 A342094 counts partitions with adjacent x <= 2y (strict: A342095).
%Y A342339 A342096 counts partitions without adjacent x >= 2y (strict: A342097).
%Y A342339 A342098 counts partitions with adjacent parts x > 2y.
%Y A342339 A342330 counts compositions with x < 2y and y < 2x (strict: A342341).
%Y A342339 A342331 counts compositions with adjacent parts x = 2y or y = 2x.
%Y A342339 A342332 counts compositions with adjacent parts x > 2y or y > 2x.
%Y A342339 A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
%Y A342339 A342334 counts compositions with adjacent parts x >= 2y or y > 2x.
%Y A342339 A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
%Y A342339 A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
%Y A342339 A342342 counts strict compositions with adjacent parts x <= 2y and y <= 2x.
%Y A342339 Cf. A003114, A003242, A034296, A040039, A167606. A342083, A342084, A342087, A342191, A342336, A342339, A342340.
%K A342339 nonn
%O A342339 1,2
%A A342339 _Gus Wiseman_, Mar 11 2021