cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342341 Number of strict compositions of n with all adjacent parts (x, y) satisfying x < 2y and y < 2x.

This page as a plain text file.
%I A342341 #10 Mar 20 2021 13:49:58
%S A342341 1,1,1,1,1,3,1,3,3,5,5,5,9,7,13,15,17,19,29,31,39,43,63,59,75,121,119,
%T A342341 169,167,199,279,305,343,479,537,733,789,883,1057,1421,1545,1831,2409,
%U A342341 2577,3343,4001,4657,5131,6065,7755,8841,10473,12995,14659,17671,20619,25157,28255,33131,38265,47699,53171,62611,80005,88519,105937,119989
%N A342341 Number of strict compositions of n with all adjacent parts (x, y) satisfying x < 2y and y < 2x.
%C A342341 Each quotient of adjacent parts is between 1/2 and 2 exclusive.
%H A342341 Bert Dobbelaere, <a href="/A342341/b342341.txt">Table of n, a(n) for n = 0..100</a>
%e A342341 The a(1) = 1 through a(17) = 17 compositions (A..G = 10..16):
%e A342341   1  2  3  4  5   6  7   8   9    A    B   C    D    E     F     G
%e A342341               23     34  35  45   46   47  57   58   59    69    6A
%e A342341               32     43  53  54   64   56  75   67   68    78    79
%e A342341                              234  235  65  345  76   86    87    97
%e A342341                              432  532  74  354  85   95    96    A6
%e A342341                                            435  346  347   357   358
%e A342341                                            453  643  356   456   457
%e A342341                                            534       653   465   475
%e A342341                                            543       743   546   547
%e A342341                                                      2345  564   574
%e A342341                                                      2354  645   745
%e A342341                                                      4532  654   754
%e A342341                                                      5432  753   853
%e A342341                                                            2346  2347
%e A342341                                                            6432  2356
%e A342341                                                                  6532
%e A342341                                                                  7432
%t A342341 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],And@@Table[#[[i]]<2*#[[i-1]]&&#[[i-1]]<2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}]
%Y A342341 The unordered version (partitions) is A342097 (non-strict: A342096).
%Y A342341 The non-strict version is A342330.
%Y A342341 The version allowing equality is A342342 (non-strict: A224957).
%Y A342341 A000929 counts partitions with adjacent parts x >= 2y.
%Y A342341 A002843 counts compositions with adjacent parts x <= 2y.
%Y A342341 A154402 counts partitions with adjacent parts x = 2y.
%Y A342341 A274199 counts compositions with adjacent parts x < 2y.
%Y A342341 A342094 counts partitions with adjacent x <= 2y (strict: A342095).
%Y A342341 A342098 counts partitions with adjacent parts x > 2y.
%Y A342341 A342331 counts compositions with adjacent parts x = 2y or y = 2x.
%Y A342341 A342332 counts compositions with adjacent parts x > 2y or y > 2x.
%Y A342341 A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
%Y A342341 A342335 counts compositions with adjacent parts x >= 2y or y = 2x.
%Y A342341 A342337 counts partitions with adjacent parts x = y or x = 2y.
%Y A342341 A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
%Y A342341 Cf. A003114, A003242, A034296, A167606, A342083, A342084, A342087, A342191, A342334, A342336, A342339, A342340.
%K A342341 nonn
%O A342341 0,6
%A A342341 _Gus Wiseman_, Mar 12 2021
%E A342341 More terms from _Bert Dobbelaere_, Mar 19 2021