This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342343 #12 Apr 17 2021 01:53:20 %S A342343 1,1,1,3,3,5,8,10,13,18,27,32,44,55,73,97,121,151,194,240,299,384,465, %T A342343 576,706,869,1051,1293,1572,1896,2290,2761,3302,3973,4732,5645,6759, %U A342343 7995,9477,11218,13258,15597,18393,21565,25319,29703,34701,40478,47278,54985 %N A342343 Number of strict compositions of n with alternating parts strictly decreasing. %C A342343 These are finite odd-length sequences q of distinct positive integers summing to n such that q(i) > q(i+2) for all possible i. %H A342343 Andrew Howroyd, <a href="/A342343/b342343.txt">Table of n, a(n) for n = 0..1000</a> %F A342343 G.f.: Sum_{k>=0} binomial(k,floor(k/2)) * [y^k](Product_{j>=1} 1 + y*x^j). - _Andrew Howroyd_, Apr 16 2021 %e A342343 The a(1) = 1 through a(8) = 13 compositions: %e A342343 (1) (2) (3) (4) (5) (6) (7) (8) %e A342343 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) %e A342343 (2,1) (3,1) (2,3) (2,4) (2,5) (2,6) %e A342343 (3,2) (4,2) (3,4) (3,5) %e A342343 (4,1) (5,1) (4,3) (5,3) %e A342343 (2,3,1) (5,2) (6,2) %e A342343 (3,1,2) (6,1) (7,1) %e A342343 (3,2,1) (2,4,1) (2,5,1) %e A342343 (4,1,2) (3,4,1) %e A342343 (4,2,1) (4,1,3) %e A342343 (4,3,1) %e A342343 (5,1,2) %e A342343 (5,2,1) %t A342343 ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}]; %t A342343 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],ici]],{n,0,15}] %o A342343 (PARI) seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, binomial(k, k\2) * polcoef(p,k,y)))} \\ _Andrew Howroyd_, Apr 16 2021 %Y A342343 The non-strict case is A000041 (see A342528 for a bijective proof). %Y A342343 The non-strict odd-length case is A001522. %Y A342343 Strict compositions in general are counted by A032020 %Y A342343 The non-strict even-length case is A064428. %Y A342343 The case of reversed partitions is A065033. %Y A342343 A000726 counts partitions with alternating parts unequal. %Y A342343 A003242 counts anti-run compositions. %Y A342343 A027193 counts odd-length compositions. %Y A342343 A034008 counts even-length compositions. %Y A342343 A064391 counts partitions by crank. %Y A342343 A064410 counts partitions of crank 0. %Y A342343 A224958 counts compositions with alternating parts unequal. %Y A342343 A257989 gives the crank of the partition with Heinz number n. %Y A342343 A325548 counts compositions with strictly decreasing differences. %Y A342343 A342194 counts strict compositions with equal differences. %Y A342343 A342527 counts compositions with alternating parts equal. %Y A342343 Cf. A000009, A000670, A008965, A062968, A065608, A109613, A114921, A325546, A332304, A332305, A342532. %K A342343 nonn %O A342343 0,4 %A A342343 _Gus Wiseman_, Apr 01 2021