This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342372 #34 Apr 07 2021 09:30:38 %S A342372 1,1,1,1,4,0,1,9,9,3,1,16,48,32,0,1,25,150,250,75,15,1,36,360,1200, %T A342372 1224,288,0,1,49,735,4165,8869,6321,931,133,1,64,1344,11648,43136, %U A342372 64512,33024,4096,0,1,81,2268,27972,160866,423306,469800 %N A342372 Triangle T(n,k) of number of ways of arranging q nonattacking semi-queens on an n X n toroidal board, where 0 <= k <= n. %C A342372 T(0,0):=1 for combinatorial reasons. %C A342372 A semi-queen can only move horizontal, vertical and parallel to the main diagonal of the board. Moves parallel to the secondary diagonal are not allowed. %C A342372 Instead of a board on a torus, you can imagine that the semi-queens can leave a flat board on one side and re-enter the board on the other side. %H A342372 Walter Trump, <a href="/A342372/b342372.txt">Table of n, a(n) for n = 1..222</a> %H A342372 Walter Trump, <a href="/A342372/a342372_2.pdf">Semi-queen problem</a> %F A342372 T(n,0) = 1. %F A342372 T(n,1) = n^2. %F A342372 T(n,2) = n^2*(n-1)*(n-2)/2. %F A342372 T(n,3) = n^2*(n-1)*(n-2)*(n^2-6n+10)/6. %F A342372 T(2n+1,2n+1) = A006717(n). %F A342372 T(2n,2n) = 0. %e A342372 1; %e A342372 1, 1; %e A342372 1, 4, 0; %e A342372 1, 9, 9, 3; %e A342372 1, 16, 48, 32, 0; %e A342372 1, 25, 150, 250, 75, 15; %Y A342372 Cf. A006717, A099152, A103220, A202654, A202655, A202656, A202657. %K A342372 tabl,nonn %O A342372 1,5 %A A342372 _Walter Trump_, Mar 09 2021