A377700 Number of ways of placing n nonattacking rooks on a toroidal board of 2n^2 equilateral triangular spaces.
2, 4, 6, 48, 30, 1152, 266, 45824, 4050, 2736000, 75702, 233017344, 2060734
Offset: 1
Examples
For n = 4, the a(4) = 48 arrangements are generated from one solution by symmetries of the toroidal grid: o---o---o---o---o / \ /X\ / \ / \ / o---o---o---o---o / \X/ \ / \ / \ / o---o---o---o---o / \ / \ / \ / \X/ o---o---o---o---o / \ / \ /X\ / \ / o---o---o---o---o
Programs
-
MiniZinc
% minizinc -D 'N=6' -s --all-solutions a.mzn include "globals.mzn"; include "alldifferent.mzn"; int: N; array[1..N] of var 1..N: perm1; array[1..N] of var 1..N: perm2; constraint alldifferent(perm1); constraint alldifferent(perm2); constraint forall(i in 1..N)(perm1[i] + perm2[i] + i in {N,N+1,2*N,2*N+1,3*N}); solve satisfy; output [show(i) ++ " " | i in 1..N]; output [show(perm1[i]) ++ " " | i in 1..N]; output [show(perm2[i]) ++ " " | i in 1..N];
Formula
a(2k+1) = 2 * A006717(k).
Comments