This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342381 #24 Jun 02 2025 15:24:10 %S A342381 1,1,1,5,2,1,29,15,3,1,233,116,30,4,1,2329,1165,290,50,5,1,27949, %T A342381 13974,3495,580,75,6,1,391285,195643,48909,8155,1015,105,7,1,6260561, %U A342381 3130280,782572,130424,16310,1624,140,8,1,112690097,56345049,14086260,2347716,293454,29358,2436,180,9,1 %N A342381 Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0. %C A342381 Equivalently the number of symmetries of the n-dimensional cross-polytope that fix exactly 2*k vertices. %C A342381 If a facet of the hypercube is fixed, then the opposite facet must also be fixed. %H A342381 Peter Kagey, <a href="/A342381/b342381.txt">Rows n = 0..100, flattened</a> %H A342381 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cross-polytope">Cross-polytope</a> %H A342381 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hypercube">Hypercube</a> %H A342381 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hyperoctahedral_group">Hyperoctahedral group</a> %F A342381 T(n,k) = A114320(2n,k)/A001147(n). %F A342381 T(n,k) = A000354(n-k)*binomial(n,k). %e A342381 Table begins: %e A342381 n\k | 0 1 2 3 4 5 6 7 8 9 %e A342381 ----+-------------------------------------------------------------- %e A342381 0 | 1 %e A342381 1 | 1 1 %e A342381 2 | 5 2 1 %e A342381 3 | 29 15 3 1 %e A342381 4 | 233 116 30 4 1 %e A342381 5 | 2329 1165 290 50 5 1 %e A342381 6 | 27949 13974 3495 580 75 6 1 %e A342381 7 | 391285 195643 48909 8155 1015 105 7 1 %e A342381 8 | 6260561 3130280 782572 130424 16310 1624 140 8 1 %e A342381 9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1 %e A342381 For the cube in n=2 dimensions (the square) there is %e A342381 T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity: %e A342381 2 %e A342381 +---+ %e A342381 3| |1; %e A342381 +---+ %e A342381 4 %e A342381 T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips: %e A342381 4 2 %e A342381 +---+ +---+ %e A342381 3| |1 and 1| |3; %e A342381 +---+ +---+ %e A342381 2 4 %e A342381 and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips: %e A342381 1 4 3 3 1 %e A342381 +---+ +---+ +---+ +---+ +---+ %e A342381 2| |4, 1| |3, 4| |2, 2| |4, and 4| |2. %e A342381 +---+ +---+ +---+ +---+ +---+ %e A342381 3 2 1 1 3 %o A342381 (PARI) f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354 %o A342381 T(n, k) = f(n-k)*binomial(n, k); \\ _Michel Marcus_, Mar 10 2021 %Y A342381 Columns and diagonals: A000354 (k=0), A161937 (k=1), A028895 (n=k+2). %Y A342381 Row sums are A000165. %Y A342381 Cf. A001147, A114320. %K A342381 nonn,tabl %O A342381 0,4 %A A342381 _Peter Kagey_, Mar 09 2021