cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342384 Irregular triangle T read by rows: T(n, k) is the number of n-th order magic triangles with magic constant equal to A285009(n) + k, with 0 < k <= 3*n - 5.

This page as a plain text file.
%I A342384 #18 May 08 2024 02:25:05
%S A342384 0,1,1,1,1,2,0,4,6,4,0,2,18,38,71,108,115,115,108,71,38,18,155,351,
%T A342384 695,1067,1475,1815,2007,1815,1475,1067,695,351,155,1891,4768,9872,
%U A342384 15370,22527,30096,35731,37957,37957,35731,30096,22527,15370,9872,4768,1891
%N A342384 Irregular triangle T read by rows: T(n, k) is the number of n-th order magic triangles with magic constant equal to A285009(n) + k, with 0 < k <= 3*n - 5.
%H A342384 Andrew Howroyd, <a href="/A342384/b342384.txt">Table of n, a(n) for n = 2..118</a> (rows 2..10)
%H A342384 Terrel Trotter, <a href="https://www.trottermath.net/simpleops/magictri.html">Normal Magic Triangles of Order n</a>, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
%H A342384 Terrel Trotter, <a href="https://www.trottermath.net/simpleops/pmp.html">Perimeter-Magic Polygons</a>, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20.
%e A342384 The triangle begins:
%e A342384     0;
%e A342384     1,   1,   1,    1;
%e A342384     2,   0,   4,    6,    4,    0,    2;
%e A342384    18,  38,  71,  108,  115,  115,  108,   71,   38,   18;
%e A342384   155, 351, 695, 1067, 1475, 1815, 2007, 1815, 1475, 1067, 695, 351, 155;
%e A342384   ...
%o A342384 (PARI) \\ See A342467 for program code.
%o A342384 { for(n=2, 6, print(A342384row(n))) } \\ _Andrew Howroyd_, Feb 05 2022
%Y A342384 Cf. A016777 (row length), A179805, A285009, A341740, A342467 (row sums).
%K A342384 nonn,tabf
%O A342384 2,6
%A A342384 _Stefano Spezia_, Mar 10 2021
%E A342384 Terms a(14) and beyond from _Andrew Howroyd_, Feb 05 2022