A342390 Numbers k such that the ring of integers of Q(2^(1/k)) is not Z[2^(1/k)].
1093, 2186, 3279, 3511, 4372, 5465, 6558, 7022, 7651, 8744, 9837, 10533, 10930, 12023, 13116, 14044, 14209, 15302, 16395, 17488, 17555, 18581, 19674, 20767, 21066, 21860, 22953, 24046, 24577, 25139, 26232, 27325, 28088, 28418, 29511, 30604, 31599, 31697, 32790
Offset: 1
Keywords
Examples
2^364 == 1 (mod 1093^2), so x = (1 + 2^(364/1093) + 2^(2*364/1093) + ... + 2^(1092*364/1093))/1093 is an algebraic integer not in Z[2^(1/1093)].
Links
- Jianing Song, Table of n, a(n) for n = 1..11995 (all terms up to 10^7).
- Keith Conrad, The ring of integers in a radical extension
Programs
-
PARI
Wieferich_up_to_n(lim) = my(v=[]); forprime(p=2, lim, if(Mod(2,p^2)^(p-1)==1, v=concat(v,p))); v Up_to_n(lim) = my(pv=Wieferich_up_to_n(lim), list=[]); for(i=1, #pv, my(p=pv[i]); for(k=1, lim\p, list=concat(list, k*p))); list=Set(list); list \\ corrected by Jianing Song, Mar 19 2022
-
PARI
Up_to_n(lim) = my(list=[]); for(k=1, lim\1093, list=concat(list, 1093*k)); for(k=1, lim\3511, list=concat(list, 3511*k)); list=Set(list); list \\ valid up to 4.97*10^17, corrected by Jianing Song, Mar 19 2022
Comments