A342391 Odd numbers k such that the ring of integers of Q(5^(1/k)) is not Z[5^(1/k)].
20771, 40487, 62313, 103855, 121461, 145397, 186939, 202435, 228481, 270023, 283409, 311565, 353107, 364383, 394649, 436191, 445357, 477733, 519275, 526331, 560817, 602359, 607305, 643901, 685443, 688279, 726985, 768527, 769253, 810069, 850227, 851611, 893153, 931201, 934695, 976237
Offset: 1
Keywords
Examples
5^10385 == 1 (mod 20771^2), so x = (1 + 5^(10385/20771) + 5^(2*10385/20771) + ... + 5^(20770*10385/20771))/20771 is an algebraic integer not in Z[5^(1/20771)].
Links
- Jianing Song, Table of n, a(n) for n = 1..7286 (all terms up to 2*10^8).
- Keith Conrad, The ring of integers in a radical extension
Programs
-
PARI
Wieferich_up_to_n(lim) = my(v=[]); forprime(p=2, lim, if(Mod(5,p^2)^(p-1)==1, v=concat(v,p))); v Up_to_n(lim) = my(pv=Wieferich_up_to_n(lim), list=[]); for(i=2, #pv, my(p=pv[i]); forstep(k=1, lim\p, 2, list=concat(list, k*p))); list=Set(list); list \\ corrected by Jianing Song, Mar 21 2022
Comments