A342398 Numbers k such that there is a subset of the nontrivial unitary divisors of k, {d|k : 1 < d < k, gcd(d, k/d) = 1}, that adds up to k.
30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834, 840, 858
Offset: 1
Keywords
Examples
30 is a term since its proper unitary divisors, 1 < d < 30, are {2, 3, 5, 6, 10, 15}, and 5 + 10 + 15 = 30.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Module[{d = Most @ Select[Divisors[n], CoprimeQ[#, n/#] &], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, 2, Length[d]}], {x, 0, n}], n] > 0]; Select[Range[1000], q]