This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342410 #80 Apr 30 2021 06:15:52 %S A342410 0,1,2,3,4,1,6,7,8,1,2,3,12,1,14,15,16,1,2,3,4,1,6,7,24,1,2,3,28,1,30, %T A342410 31,32,1,2,3,4,1,6,7,8,1,2,3,12,1,14,15,48,1,2,3,4,1,6,7,56,1,2,3,60, %U A342410 1,62,63,64,1,2,3,4,1,6,7,8,1,2,3,12,1,14,15 %N A342410 The binary expansion of a(n) corresponds to that of n where all the 1's have been replaced by 0's except in the last run of 1's. %C A342410 In other words, this sequence gives the last run of 1's in the binary expansion of a number. %H A342410 Rémy Sigrist, <a href="/A342410/b342410.txt">Table of n, a(n) for n = 0..8192</a> %H A342410 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A342410 a(2*n) = 2*a(n). %F A342410 a(a(n)) = a(n). %F A342410 a(n) <= n with equality iff n belongs to A023758. %e A342410 The first terms, alongside their binary expansion, are: %e A342410 n a(n) bin(n) bin(a(n)) %e A342410 -- ---- ------ --------- %e A342410 0 0 0 0 %e A342410 1 1 1 1 %e A342410 2 2 10 10 %e A342410 3 3 11 11 %e A342410 4 4 100 100 %e A342410 5 1 101 1 %e A342410 6 6 110 110 %e A342410 7 7 111 111 %e A342410 8 8 1000 1000 %e A342410 9 1 1001 1 %e A342410 10 2 1010 10 %e A342410 11 3 1011 11 %e A342410 12 12 1100 1100 %e A342410 13 1 1101 1 %e A342410 14 14 1110 1110 %e A342410 15 15 1111 1111 %t A342410 Array[FromDigits[If[Length[s=Split@IntegerDigits[#,2]]>1,Flatten[s[[-2;;]]],First@s],2]&,100,0] (* _Giorgos Kalogeropoulos_, Apr 27 2021 *) %o A342410 (PARI) a(n) = { if (n, my (z=valuation(n, 2), o=valuation(n/2^z+1, 2)); (2^o-1)*2^z, 0) } %o A342410 (Python) %o A342410 def A342410(n): %o A342410 if n == 0 : return 0 %o A342410 for i, d in enumerate(bin(n)[2:].split('0')[::-1]): %o A342410 if d != '': return int(d+'0'*i,2) # _Chai Wah Wu_, Apr 29 2021 %Y A342410 Cf. A023758, A089309, A135481, A342126. %K A342410 nonn,base,easy %O A342410 0,3 %A A342410 _Rémy Sigrist_, Apr 25 2021