cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342422 a(n) = Sum_{k=1..n} (n/gcd(k,n))^gcd(k,n).

This page as a plain text file.
%I A342422 #13 Mar 13 2021 10:05:04
%S A342422 1,3,7,13,21,39,43,81,109,173,111,475,157,507,1107,1153,273,2997,343,
%T A342422 6133,6685,3479,507,30819,13001,10533,44227,65071,813,234959,931,
%U A342422 215553,368265,136241,414183,1991281,1333,531471,3215947,4883141,1641,12951117,1807,12735043,36892689,8401259
%N A342422 a(n) = Sum_{k=1..n} (n/gcd(k,n))^gcd(k,n).
%H A342422 Seiichi Manyama, <a href="/A342422/b342422.txt">Table of n, a(n) for n = 1..5000</a>
%F A342422 a(n) = Sum_{d|n} phi(d^(n/d+1)) = Sum_{d|n} phi(d) * d^(n/d).
%t A342422 a[n_] := Sum[(n/GCD[k, n])^GCD[k, n], {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, Mar 11 2021 *)
%o A342422 (PARI) a(n) = sum(k=1, n, (n/gcd(k, n))^gcd(k, n));
%o A342422 (PARI) a(n) = sumdiv(n, d, eulerphi(d^(n/d+1)));
%o A342422 (PARI) a(n) = sumdiv(n, d, eulerphi(d)*d^(n/d));
%Y A342422 Cf. A000010, A342421.
%K A342422 nonn
%O A342422 1,2
%A A342422 _Seiichi Manyama_, Mar 11 2021