This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342431 #28 Mar 27 2021 03:58:54 %S A342431 1,2,5,8,13,18,21,24,29,31,34,38,42,46 %N A342431 Solution to Von Neumann stepping stone puzzle (see Comments). %C A342431 This is a variant of the stepping stone sequence (A337663), where any cell has just 4 neighbors (Von Neumann neighborhood). The game works as follows: %C A342431 Start with an infinite square grid. Each cell has four neighbors. Place n 1's anywhere. Now place the numbers 2, 3, ..., m in order, subject to the rule that when you place k, the sum of its neighbors must equal k. Then a(n) is the maximum m that can be achieved. %F A342431 a(n) >= 3n - 4 (found by _Thomas Ladouceur_). %F A342431 The proof follows by this construction: %F A342431 +----+----+----+----+----+----+----+ %F A342431 | 1 | 4 | 5 | 6 | 1 | 10 | 11 | %F A342431 +----+----+----+----+----+----+----+ %F A342431 | 2 | 3 | 1 | 7 | 8 | 9 | 1 | %F A342431 +----+----+----+----+----+----+----+ %F A342431 | 1 | | | | | | | %F A342431 +----+----+----+----+----+----+----+ %e A342431 From code compiled by _Hugo van der Sanden_ and _Thomas Ladouceur_. %e A342431 a(3) = 5, with 3 1's: %e A342431 +----+----+----+ %e A342431 | 1 | 2 | 1 | %e A342431 +----+----+----+ %e A342431 | 4 | 3 | | %e A342431 +----+----+----+ %e A342431 | 5 | 1 | | %e A342431 +----+----+----+ %e A342431 and %e A342431 a(10) = 31, with 10 1's: %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | | 9 | 8 | 1 | 11 | | | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | | 1 | 7 | 6 | 10 | | | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | 28 | 27 | 12 | 5 | 4 | 1 | | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | 1 | 14 | 13 | 1 | 3 | 2 | 1 | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | 16 | 15 | | | 26 | 29 | 30 | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | 17 | 1 | 21 | 22 | 23 | 1 | 31 | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | 18 | 19 | 20 | 1 | 24 | 25 | | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %e A342431 | 1 | | | | | | | | | | %e A342431 +----+----+----+----+----+----+----+----+----+----+ %Y A342431 Cf. A337663. %K A342431 nonn,more,hard %O A342431 1,2 %A A342431 _Jeremy Rebenstock_, _Thomas Ladouceur_ Mar 12 2021 %E A342431 a(13)-a(14) from _Bert Dobbelaere_, Mar 19 2021