A342450 a(n) is the numerator of the Schnirelmann density of the n-free numbers.
53, 157, 145, 3055, 6165, 234331, 584879, 2599496, 48785015, 292856489, 854612603, 12206236915, 8392400925, 183100803621, 1296977891119, 15258697717317, 2997253335821, 79472769236347, 556309528064071, 5960463317677243, 25033951904190895, 46938653648975843, 3099441423652148001
Offset: 2
Examples
The fractions begin with 53/88, 157/189, 145/157, 3055/3168, 6165/6272, 234331/236288, 584879/587264, 2599496/2604717, 48785015/48833536, 292856489/293001216, ...
References
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter VI, p. 217.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..75 (from Hardy, 1979)
- P. H. Diananda and M. V. Subbarao, On the Schnirelmann density of the k-free integers, Proceedings of the American Mathematical Society, Vol. 62, No. 1 (1977), pp. 7-10.
- R. L. Duncan, The Schnirelmann density of the k-free integers, Proceedings of the American Mathematical Society, Vol. 16, No. 5 (1965), pp. 1090-1091.
- R. L. Duncan, On the density of the k-free integers, Fibonacci Quarterly, Vol. 7, No. 2 (1969), pp. 140-142.
- Paul Erdős, G. E. Hardy and M. V. Subbarao, On the Schnirelmann density of k-free integers, Indian J. Math., Vol. 20 (1978), pp. 45-56.
- George Eugene Hardy, On the Schnirelmann density of the k-free and (k,r)-free integers, Ph.D. thesis, University of Alberta, 1979.
- Richard C. Orr, On the Schnirelmann density of the sequence of k-free integers, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.
- Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proceedings of the American Mathematical Society, Vol. 15, No. 4 (1964), pp. 515-516.
- Harold M. Stark, On the asymptotic density of the k-free integers, Proceedings of the American Mathematical Society, Vol. 17, No. 5 (1966), pp. 1211-1214.
- M. V. Subbarao, On the Schnirelman density of the K-free integers, Distribution of values of arithmetic functions, Vol. 517 (1984), pp. 47-61; alternative link.
- Eric Weisstein's World of Mathematics, Schnirelmann Density.
- Wikipedia, Schnirelmann density.
Formula
Let d(n) = a(n)/A342451(n), and let D(n) = 1/zeta(n), the asymptotic density of the n-free numbers. Then:
Lim_{n->oo} d(n) = 1.
d(n) < D(n) (Stark, 1966).
d(n) < D(n) < d(n+1) < D(n+1) (Duncan, 1965; Erdős et al., 1978).
d(n) > 1 - Sum_{p prime} 1/p^n (Duncan, 1969).
(D(n+1)-d(n+1))/(D(n)-d(n)) < 1/2^n (Duncan, 1969).
d(n) > 1 - 1/2^n - 1/3^n - 1/5^n (Diananda and Subbarao, 1977).
Comments