This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342455 #32 Mar 14 2021 20:43:23 %S A342455 1,32,7776,24300000,408410100000,65774855015100000, %T A342455 24421743243121524300000,34675383095948798128025100000, %U A342455 85859681408495723096004822084900000,552622359415801587878908964592391520700000,11334919554709059323420895730190266747414284300000,324509123504618420438174660414872405442002404781629300000 %N A342455 The fifth powers of primorials: a(n) = A002110(n)^5. %C A342455 The ratio G(n) = sigma(n) / (exp(gamma)*n*log(log(n))), where gamma is the Euler-Mascheroni constant (A001620), as applied to these numbers from a(1)=32 onward, develops as: %C A342455 1: 0.8893323133 %C A342455 2: 0.7551575418 %C A342455 3: 0.7303870617 %C A342455 4: 0.7347890824 %C A342455 5: 0.7263701246 %C A342455 6: 0.7298051649 %C A342455 7: 0.7304358358 %C A342455 8: 0.7354921494 %C A342455 9: 0.7389343933 %C A342455 10: 0.7391912616 %C A342455 11: 0.7416291350 %C A342455 12: 0.7424159544 %C A342455 ... %C A342455 Notably, after its minimum at term a(5) = 65774855015100000, it starts increasing again, albeit rather slowly. At n=10000 the ratio is 0.8632750..., and at n=40000, it is 0.87545260... Question: Does this trend continue indefinitely? In contrast, for primorials, A002110, the ratio appears to be monotonically decreasing, see comments in A342000. %H A342455 Young Ju Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, <a href="https://doi.org/10.5802/jtnb.591">On Robin's criterion for the Riemann hypothesis</a>, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372. %H A342455 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A342455 a(n) = A000584(A002110(n)) = A002110(n)^5. %t A342455 FoldList[Times, 1, Prime@ Range[11]]^5 (* _Michael De Vlieger_, Mar 14 2021 *) %o A342455 (PARI) A342455(n) = prod(i=1,n,prime(i))^5; %o A342455 (Python) %o A342455 from sympy.ntheory.generate import primorial %o A342455 def A342455(n): return primorial(n)**5 if n >= 1 else 1 # _Chai Wah Wu_, Mar 13 2021 %Y A342455 Cf. A000584, A001620, A002110, A073004, A181555, A342000. %Y A342455 Diagonal in A079474. After the initial term, also the leftmost branch in that subtree of A329886 whose root is 32. %K A342455 nonn %O A342455 0,2 %A A342455 _Antti Karttunen_, Mar 12 2021