cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342462 Sum of digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

This page as a plain text file.
%I A342462 #23 Apr 09 2021 09:21:36
%S A342462 1,1,1,2,1,2,2,2,1,2,6,4,6,4,2,4,1,2,6,4,10,6,6,4,8,12,10,8,22,4,8,2,
%T A342462 1,2,6,4,6,2,6,2,18,10,8,6,18,12,16,4,26,16,24,8,20,14,4,6,26,16,14,8,
%U A342462 30,6,8,4,1,2,6,4,14,12,12,8,18,12,24,4,8,12,14,4,24,20,28,20,26,16,16,12,32,26,24,14,28,16
%N A342462 Sum of digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.
%C A342462 From _David A. Corneth_'s Feb 27 2019 comment in A276150 follows that the only odd terms in this sequence are 1's occurring at 0 and at two's powers.
%C A342462 Subsequences starting at each n = 2^k are slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, 180, 24, etc.. Compare also to the behaviors of A324342 and A342463.
%H A342462 Antti Karttunen, <a href="/A342462/b342462.txt">Table of n, a(n) for n = 0..8192</a>
%H A342462 Antti Karttunen, <a href="/A342462/a342462.txt">Data supplement: n, a(n) computed for n = 0..65537</a>
%H A342462 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A342462 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A342462 a(n) = A001222(A342456(n)) = A001222(A342457(n)).
%F A342462 a(n) = A276150(A329886(n)) = A324888(A005940(1+n)).
%F A342462 a(n) >= A342461(n).
%F A342462 For n >= 0, a(2^n) = 1.
%o A342462 (PARI) A342462(n) = bigomega(A342456(n)); \\ Other code as in A342456.
%o A342462 (PARI)
%o A342462 A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)};
%o A342462 A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2)));
%o A342462 A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
%o A342462 A342462(n) = A276150(A329886(n));
%Y A342462 Cf. A001222, A005940, A108951, A276150, A329886, A342456, A342457, A342461, A342463, A342464.
%Y A342462 Cf. also A324342, A324383, A324387, A324888.
%K A342462 nonn
%O A342462 0,4
%A A342462 _Antti Karttunen_, Mar 15 2021