cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342476 Numbers m > 1 such that W(m) > W(k) for all 1 < k < m, where W(k) = omega(k)*log(log(k))/log(k).

This page as a plain text file.
%I A342476 #5 Mar 13 2021 18:07:23
%S A342476 2,3,4,5,6,10,12,14,15,30,210,2310,30030,510510,9699690,223092870
%N A342476 Numbers m > 1 such that W(m) > W(k) for all 1 < k < m, where W(k) = omega(k)*log(log(k))/log(k).
%C A342476 Includes the primorials prime(k)# = A002110(k) for 1 <= k <= 9.
%C A342476 Since the maximum of the function f(x) = log(log(x))/log(x) occurs at exp(e) = 15.154... (A073226), 15 is the largest term that is not a primorial.
%C A342476 The corresponding record values are -0.528..., 0.085..., 0.235..., 0.295..., 0.650..., 0.724..., 0.732..., 0.735..., 0.735..., 1.079..., 1.254..., 1.321..., 1.357..., 1.371..., 1.381..., 1.384...
%D A342476 József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, p. 168.
%H A342476 Hans-Joachim Kanold, <a href="https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00031280/Kanold_Kombinatorische_Zahlentheorie.pdf">Über einige Ergebnisse aus der kombinatorischen Zahlentheorie</a>, Abh. Braunschweig, Wiss. Ges., Vol. 36 (1984), pp. 203-229. See eq. 96, pp. 219-220.
%t A342476 w[n_] := PrimeNu[n]*Log[Log[n]]/Log[n]; wmax = -1; seq = {}; Do[w1 = w[n]; If[w1 > wmax, wmax = w1; AppendTo[seq, n]], {n, 2, 2500}]; seq
%Y A342476 Cf. A001221, A002110, A073226.
%K A342476 nonn,fini,full
%O A342476 1,1
%A A342476 _Amiram Eldar_, Mar 13 2021