cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342477 The squarefree part of the powerful numbers: a(n) = A007913(A001694(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 3, 1, 5, 2, 1, 1, 1, 2, 6, 1, 3, 1, 2, 1, 1, 7, 1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 6, 1, 1, 2, 3, 10, 1, 1, 5, 2, 1, 1, 1, 3, 11, 2, 1, 7, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 6, 5, 1, 2, 1, 3, 13, 1, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; sqfp[n_] := Times @@ f @@@ FactorInteger[n]; powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; sqfp /@ Select[Range[1000], powQ]

Formula

Theorems 1-4 by Copil and Panaitopol (2007):
Sum_{k=1..n} a(k) ~ (3/Pi^2)*zeta(4/3)*n^(3/2) + O(sqrt(n)*log(n)).
Sum_{k=1..n} a(k)^2 ~ n/3 + O(n^(5/6)).
Sum_{k=1..n} 1/a(k) ~ (zeta(5/2)/zeta(5))*sqrt(n) + O(log(n)).
Product_{k=1..n} a(k) ~ exp(c*sqrt(n) + O(n^(1/3)*log(n))), where c = Sum_{k>=1} f(A005117(k)), and f(x) = log(x)/x^(3/2).