cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342479 a(n) is the numerator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).

This page as a plain text file.
%I A342479 #14 Mar 14 2021 05:20:20
%S A342479 0,1,1,1,46,44,288,33216,613248,151296,391584768,2383570944,
%T A342479 86830424064,206470840320,21270238986240,987259950858240,
%U A342479 1262040231444480,3022250536693923840,3884253754215628800,1102040800033347993600,1892288242221318144000,5616902226049109065728000
%N A342479 a(n) is the numerator of the asymptotic density of numbers whose second smallest prime divisor (A119288) is prime(n).
%C A342479 The second smallest prime divisor of a number k is the second member in the ordered list of the distinct prime divisors of k. All the numbers that are not prime powers (A000961) have a second smallest prime divisor.
%D A342479 József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 337-341.
%H A342479 Amiram Eldar, <a href="/A342479/b342479.txt">Table of n, a(n) for n = 1..376</a>
%H A342479 Paul Erdős and Gérald Tenenbaum, <a href="https://doi.org/10.1112/plms/s3-59.3.417">Sur les densités de certaines suites d'entiers</a>, Proc. London Math. Soc. (3), Vol. 59, No. 3 (1989), pp. 417-438; <a href="https://users.renyi.hu/~p_erdos/1989-36.pdf">alternative link</a>.
%F A342479 a(n)/A342480(n) = (1/prime(n)) * Product_{q prime < prime(n)} (1 - 1/q) * Sum_{q prime < prime(n)} 1/(q-1).
%F A342479 Sum_{n>=1} a(n)/A342480(n) = 1 (since the asymptotic density of numbers without a second smallest prime divisor, i.e., the prime powers, is 0).
%e A342479 The fractions begin with 0, 1/6, 1/10, 1/15, 46/1155, 44/1365, 288/12155, 33216/1616615, 613248/37182145, 151296/11849255, 391584768/33426748355, ...
%e A342479 a(1) = 0 since there are no numbers whose second smallest prime divisor is prime(1) = 2.
%e A342479 a(2)/A342480(2) = 1/6 since the numbers whose second smallest prime divisor is prime(2) = 3 are the positive multiples of 6.
%e A342479 a(3)/A342480(3) = 1/10 since the numbers whose second smallest prime divisor is prime(3) = 5 are the numbers congruent to {10, 15, 20} (mod 30) whose density is 3/30 = 1/10.
%t A342479 f[n_] := Module[{p = Prime[n], q}, q = Select[Range[p - 1], PrimeQ]; Plus @@ (1/(q - 1))*Times @@ ((q - 1)/q)/p]; Numerator @ Array[f, 30]
%Y A342479 Cf. A000961, A038110, A038111, A119288, A342480 (denominators).
%K A342479 nonn,easy,frac
%O A342479 1,5
%A A342479 _Amiram Eldar_, Mar 13 2021