cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342485 a(n) = Sum_{d|n} phi(d)^(d+1).

This page as a plain text file.
%I A342485 #19 May 08 2021 07:46:52
%S A342485 1,2,17,34,4097,146,1679617,262178,60466193,4198402,1000000000001,
%T A342485 67109042,1283918464548865,470186664194,281474976714769,
%U A342485 2251799813947426,4722366482869645213697,609359800476818,12748236216396078174437377,9223372036858974242
%N A342485 a(n) = Sum_{d|n} phi(d)^(d+1).
%H A342485 Seiichi Manyama, <a href="/A342485/b342485.txt">Table of n, a(n) for n = 1..388</a>
%F A342485 a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n/gcd(k, n)).
%F A342485 G.f.: Sum_{k>=1} phi(k)^(k+1) * x^k/(1 - x^k).
%F A342485 If p is prime, a(p) = 1 + (p-1)^(p+1).
%F A342485 a(n) = Sum_{k=1..n} phi(gcd(n,k))^(gcd(n,k) + 1)/phi(n/gcd(n,k)). - _Richard L. Ollerton_, May 07 2021
%t A342485 a[n_] := DivisorSum[n, EulerPhi[#]^(#+1) &]; Array[a, 20] (* _Amiram Eldar_, Mar 14 2021 *)
%o A342485 (PARI) a(n) = sumdiv(n, d, eulerphi(d)^(d+1));
%o A342485 (PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n/gcd(k, n)));
%o A342485 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)^(k+1)*x^k/(1-x^k)))
%Y A342485 Cf. A000010, A342473, A342487, A342488, A342489.
%K A342485 nonn
%O A342485 1,2
%A A342485 _Seiichi Manyama_, Mar 13 2021