This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342493 #27 Feb 16 2025 08:34:01 %S A342493 1,1,2,3,6,8,11,16,22,28,39,49,61,77,93,114,140,169,198,233,276,321, %T A342493 381,439,509,591,678,774,883,1007,1147,1300,1465,1641,1845,2068,2317, %U A342493 2590,2881,3193,3549,3928,4341,4793,5282,5813,6401,7027,7699,8432,9221,10076 %N A342493 Number of compositions of n with strictly increasing first quotients. %C A342493 The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). %H A342493 Alois P. Heinz, <a href="/A342493/b342493.txt">Table of n, a(n) for n = 0..500</a> %H A342493 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LogarithmicallyConcaveSequence.html">Logarithmically Concave Sequence</a>. %H A342493 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients</a>. %e A342493 The composition (3,1,1,2) has first quotients (1/3,1,2) so is counted under a(7). %e A342493 The a(1) = 1 through a(7) = 16 compositions: %e A342493 (1) (2) (3) (4) (5) (6) (7) %e A342493 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) %e A342493 (2,1) (2,2) (2,3) (2,4) (2,5) %e A342493 (3,1) (3,2) (3,3) (3,4) %e A342493 (1,1,2) (4,1) (4,2) (4,3) %e A342493 (2,1,1) (1,1,3) (5,1) (5,2) %e A342493 (2,1,2) (1,1,4) (6,1) %e A342493 (3,1,1) (2,1,3) (1,1,5) %e A342493 (3,1,2) (2,1,4) %e A342493 (4,1,1) (2,2,3) %e A342493 (2,1,1,2) (3,1,3) %e A342493 (3,2,2) %e A342493 (4,1,2) %e A342493 (5,1,1) %e A342493 (2,1,1,3) %e A342493 (3,1,1,2) %p A342493 b:= proc(n, q, l) option remember; `if`(n=0, 1, add( %p A342493 `if`(q=0 or q>l/j, b(n-j, l/j, j), 0), j=1..n)) %p A342493 end: %p A342493 a:= n-> b(n, 0$2): %p A342493 seq(a(n), n=0..55); # _Alois P. Heinz_, Mar 25 2021 %t A342493 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}] %t A342493 (* Second program: *) %t A342493 b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[ %t A342493 If[q == 0 || q > l/j, b[n - j, l/j, j], 0], {j, 1, n}]]; %t A342493 a[n_] := b[n, 0, 0]; %t A342493 a /@ Range[0, 55] (* _Jean-François Alcover_, May 19 2021, after _Alois P. Heinz_ *) %Y A342493 The version for differences instead of quotients is A325547. %Y A342493 The weakly increasing version is A342492. %Y A342493 The strictly decreasing version is A342494. %Y A342493 The unordered version is A342498, ranked by A342524. %Y A342493 The strict unordered version is A342517. %Y A342493 A000005 counts constant compositions. %Y A342493 A000009 counts strictly increasing (or strictly decreasing) compositions. %Y A342493 A000041 counts weakly increasing (or weakly decreasing) compositions. %Y A342493 A001055 counts factorizations. %Y A342493 A003238 counts chains of divisors summing to n - 1 (strict: A122651). %Y A342493 A074206 counts ordered factorizations. %Y A342493 A167865 counts strict chains of divisors > 1 summing to n. %Y A342493 A274199 counts compositions with all adjacent parts x < 2y. %Y A342493 Cf. A003242, A008965, A048004, A059966, A067824, A167606, A253249, A318991, A318992, A342527, A342528. %K A342493 nonn %O A342493 0,3 %A A342493 _Gus Wiseman_, Mar 16 2021 %E A342493 a(21)-a(51) from _Alois P. Heinz_, Mar 18 2021