This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342497 #14 Feb 16 2025 08:34:01 %S A342497 1,1,2,3,5,6,9,11,15,18,23,25,32,36,43,49,60,65,75,83,96,106,121,131, %T A342497 150,163,178,194,217,230,254,275,300,320,350,374,411,439,470,503,548, %U A342497 578,625,666,710,758,815,855,913,970,1029,1085,1157,1212,1288,1360 %N A342497 Number of integer partitions of n with weakly increasing first quotients. %C A342497 Also called log-concave-up partitions. %C A342497 Also the number of reversed integer partitions of n with weakly increasing first quotients. %C A342497 The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). %H A342497 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LogarithmicallyConcaveSequence.html">Logarithmically Concave Sequence</a>. %H A342497 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %H A342497 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients</a>. %e A342497 The partition y = (6,3,2,1,1) has first quotients (1/2,2/3,1/2,1) so is not counted under a(13). However, the first differences (-3,-1,-1,0) are weakly increasing, so y is counted under A240026(13). %e A342497 The a(1) = 1 through a(8) = 15 partitions: %e A342497 (1) (2) (3) (4) (5) (6) (7) (8) %e A342497 (11) (21) (22) (32) (33) (43) (44) %e A342497 (111) (31) (41) (42) (52) (53) %e A342497 (211) (311) (51) (61) (62) %e A342497 (1111) (2111) (222) (322) (71) %e A342497 (11111) (411) (421) (422) %e A342497 (3111) (511) (521) %e A342497 (21111) (4111) (611) %e A342497 (111111) (31111) (2222) %e A342497 (211111) (4211) %e A342497 (1111111) (5111) %e A342497 (41111) %e A342497 (311111) %e A342497 (2111111) %e A342497 (11111111) %t A342497 Table[Length[Select[IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}] %Y A342497 The version for differences instead of quotients is A240026. %Y A342497 The ordered version is A342492. %Y A342497 The strictly increasing version is A342498. %Y A342497 The weakly decreasing version is A342513. %Y A342497 The strict case is A342516. %Y A342497 The Heinz numbers of these partitions are A342523. %Y A342497 A000005 counts constant partitions. %Y A342497 A000009 counts strict partitions. %Y A342497 A000041 counts partitions. %Y A342497 A000929 counts partitions with all adjacent parts x >= 2y. %Y A342497 A001055 counts factorizations. %Y A342497 A003238 counts chains of divisors summing to n - 1 (strict: A122651). %Y A342497 A074206 counts ordered factorizations. %Y A342497 A167865 counts strict chains of divisors > 1 summing to n. %Y A342497 A342094 counts partitions with all adjacent parts x <= 2y. %Y A342497 Cf. A000837, A002843, A003242, A175342, A318991, A318992, A325557, A342527, A342528, A342529. %K A342497 nonn %O A342497 0,3 %A A342497 _Gus Wiseman_, Mar 17 2021