A342510 a(n) = k where Z_k is the largest Zimin word that n (read as a binary word) does not avoid.
1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2
Offset: 0
Examples
For n = 10101939, the binary representation is "100110100010010010110011", and the substring "0010010010" is an instance of the Zimin word Z_3 = ABACABA with A = "0", B = "01", and C = "01". No substring is an instance of the Zimin word Z_4 = ABACABADABACABA, so a(10101939)= 3.
Links
- Peter Kagey, Table of n, a(n) for n = 0..8191
- Peter Kagey, Matching ABACABA-type patterns, Code Golf Stack Exchange.
- Danny Rorabaugh, Toward the Combinatorial Limit Theory of Free Words, arXiv preprint arXiv:1509.04372 [math.CO], 2015.
- Wikipedia, Sesquipower.
Programs
-
Python
def sd(w): # sesquipower degree return 1 + max([0]+[sd(w[:i]) for i in range(1, (len(w)+1)//2) if w[:i] == w[-i:]]) def a(n): w = bin(n)[2:] return max(sd(w[i:j]) for i in range(len(w)) for j in range(i+1, len(w)+1)) print([a(n) for n in range(87)]) # Michael S. Branicky, Mar 15 2021
Comments