This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342522 #9 Feb 16 2025 08:34:01 %S A342522 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,31,32, %T A342522 33,34,35,37,38,39,41,42,43,46,47,49,51,53,55,57,58,59,61,62,64,65,67, %U A342522 69,71,73,74,77,79,81,82,83,85,86,87,89,91,93,94,95,97 %N A342522 Heinz numbers of integer partitions with constant (equal) first quotients. %C A342522 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A342522 The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). %H A342522 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LogarithmicallyConcaveSequence.html">Logarithmically Concave Sequence</a>. %H A342522 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a> %H A342522 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients.</a> %e A342522 The prime indices of 2093 are {4,6,9}, with first quotients (3/2,3/2), so 2093 is in the sequence. %e A342522 Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins: %e A342522 12: {1,1,2} %e A342522 18: {1,2,2} %e A342522 20: {1,1,3} %e A342522 24: {1,1,1,2} %e A342522 28: {1,1,4} %e A342522 30: {1,2,3} %e A342522 36: {1,1,2,2} %e A342522 40: {1,1,1,3} %e A342522 44: {1,1,5} %e A342522 45: {2,2,3} %e A342522 48: {1,1,1,1,2} %e A342522 50: {1,3,3} %e A342522 52: {1,1,6} %e A342522 54: {1,2,2,2} %e A342522 56: {1,1,1,4} %e A342522 60: {1,1,2,3} %e A342522 63: {2,2,4} %e A342522 66: {1,2,5} %t A342522 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A342522 Select[Range[100],SameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&] %Y A342522 For multiplicities (prime signature) instead of quotients we have A072774. %Y A342522 The version counting strict divisor chains is A169594. %Y A342522 For differences instead of quotients we have A325328 (count: A049988). %Y A342522 These partitions are counted by A342496 (strict: A342515, ordered: A342495). %Y A342522 The distinct instead of equal version is A342521. %Y A342522 A000005 count constant partitions. %Y A342522 A000041 counts partitions (strict: A000009). %Y A342522 A001055 counts factorizations (strict: A045778, ordered: A074206). %Y A342522 A003238 counts chains of divisors summing to n - 1 (strict: A122651). %Y A342522 A167865 counts strict chains of divisors > 1 summing to n. %Y A342522 A318991/A318992 rank reversed partitions with/without integer quotients. %Y A342522 A342086 counts strict chains of divisors with strictly increasing quotients. %Y A342522 Cf. A003242, A047966, A049980, A056239, A067824, A112798, A118914, A124010, A130091, A181819, A325351, A325352. %K A342522 nonn %O A342522 1,2 %A A342522 _Gus Wiseman_, Mar 23 2021