cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342528 Number of compositions with alternating parts weakly decreasing (or weakly increasing).

This page as a plain text file.
%I A342528 #25 Jan 17 2025 02:33:08
%S A342528 1,1,2,4,7,12,20,32,51,79,121,182,272,399,582,839,1200,1700,2394,3342,
%T A342528 4640,6397,8771,11955,16217,21878,29386,39285,52301,69334,91570,
%U A342528 120465,157929,206313,268644,348674,451185,582074,748830,960676,1229208,1568716,1997064
%N A342528 Number of compositions with alternating parts weakly decreasing (or weakly increasing).
%C A342528 These are finite sequences q of positive integers summing to n such that q(i) >= q(i+2) for all possible i.
%C A342528 The strict case (alternating parts are strictly decreasing) is A000041. Is there a bijective proof?
%C A342528 Yes. Construct a Ferrers diagram by placing odd parts horizontally and even parts vertically in a fishbone pattern. The resulting Ferrers diagram will be for an ordinary partition and the process is reversible. It does not appear that this method can be applied to give a formula for this sequence. - _Andrew Howroyd_, Mar 25 2021
%H A342528 Alois P. Heinz, <a href="/A342528/b342528.txt">Table of n, a(n) for n = 0..1000</a> (first 501 terms from Andrew Howroyd)
%H A342528 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients</a>.
%F A342528 G.f.: Sum_{k>=0} ([y^k] P(x,y))*([y^k] (1 + y)*P(x,y)), where P(x,y) = Product_{k>=1} 1/(1 - y*x^k). - _Andrew Howroyd_, Jan 16 2025
%e A342528 The a(1) = 1 through a(6) = 20 compositions:
%e A342528   (1)  (2)   (3)    (4)     (5)      (6)
%e A342528        (11)  (12)   (13)    (14)     (15)
%e A342528              (21)   (22)    (23)     (24)
%e A342528              (111)  (31)    (32)     (33)
%e A342528                     (121)   (41)     (42)
%e A342528                     (211)   (131)    (51)
%e A342528                     (1111)  (212)    (141)
%e A342528                             (221)    (222)
%e A342528                             (311)    (231)
%e A342528                             (1211)   (312)
%e A342528                             (2111)   (321)
%e A342528                             (11111)  (411)
%e A342528                                      (1212)
%e A342528                                      (1311)
%e A342528                                      (2121)
%e A342528                                      (2211)
%e A342528                                      (3111)
%e A342528                                      (12111)
%e A342528                                      (21111)
%e A342528                                      (111111)
%p A342528 b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A342528       b(n, i-1, j)+b(n-i, min(n-i, j), min(n-i, i))))
%p A342528     end:
%p A342528 a:= n-> b(n$3):
%p A342528 seq(a(n), n=0..42);  # _Alois P. Heinz_, Jan 16 2025
%t A342528 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
%o A342528 (PARI) seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(1+sum(k=1, n, polcoef(p,k,y)*(polcoef(p,k-1,y) + polcoef(p,k,y))))} \\ _Andrew Howroyd_, Mar 24 2021
%Y A342528 The even-length case is A114921.
%Y A342528 The version with alternating parts unequal is A224958 (unordered: A000726).
%Y A342528 The version with alternating parts equal is A342527.
%Y A342528 A000041 counts weakly increasing (or weakly decreasing) compositions.
%Y A342528 A000203 adds up divisors.
%Y A342528 A002843 counts compositions with all adjacent parts x <= 2y.
%Y A342528 A003242 counts anti-run compositions.
%Y A342528 A069916/A342492 = decreasing/increasing first quotients.
%Y A342528 A070211/A325546 = weakly decreasing/increasing differences.
%Y A342528 A175342/A325545 = constant/distinct differences.
%Y A342528 A342495 = constant first quotients (unordered: A342496, strict: A342515, ranking: A342522).
%Y A342528 Cf. A001522, A008965, A048004, A059966, A062968, A064410, A064428, A065608, A167606, A325557, A342519.
%K A342528 nonn
%O A342528 0,3
%A A342528 _Gus Wiseman_, Mar 24 2021
%E A342528 Terms a(21) and beyond from _Andrew Howroyd_, Mar 24 2021