This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342530 #12 Jun 17 2025 09:18:38 %S A342530 1,2,2,3,2,6,2,6,3,6,2,12,2,6,6,9,2,12,2,12,6,6,2,28,3,6,6,12,2,26,2, %T A342530 14,6,6,6,31,2,6,6,28,2,26,2,12,12,6,2,52,3,12,6,12,2,28,6,28,6,6,2, %U A342530 66,2,6,12,25,6,26,2,12,6,26,2,76,2,6,12,12,6,26 %N A342530 Number of strict chains of divisors ending with n and having distinct first quotients. %C A342530 The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3). %H A342530 Gus Wiseman, <a href="/A069916/a069916.txt">Sequences counting and ranking partitions and compositions by their differences and quotients</a>. %F A342530 a(n) = Sum_{d|n} A254578(d). - _Ridouane Oudra_, Jun 17 2025 %e A342530 The a(1) = 1 through a(12) = 12 chains (reversed): %e A342530 1 2 3 4 5 6 7 8 9 10 11 12 %e A342530 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 10/1 11/1 12/1 %e A342530 4/2 6/2 8/2 9/3 10/2 12/2 %e A342530 6/3 8/4 10/5 12/3 %e A342530 6/2/1 8/2/1 10/2/1 12/4 %e A342530 6/3/1 8/4/1 10/5/1 12/6 %e A342530 12/2/1 %e A342530 12/3/1 %e A342530 12/4/1 %e A342530 12/4/2 %e A342530 12/6/1 %e A342530 12/6/2 %e A342530 Not counted under a(12) are: 12/4/2/1, 12/6/2/1, 12/6/3, 12/6/3/1. %t A342530 cmi[n_]:=Prepend[Prepend[#,n]&/@Join@@cmi/@Most[Divisors[n]],{n}]; %t A342530 Table[Length[Select[cmi[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,100}] %Y A342530 The version for weakly increasing first quotients is A057567. %Y A342530 The version for equal first quotients is A169594. %Y A342530 The case of chains starting with 1 is A254578. %Y A342530 The version for strictly increasing first quotients is A342086. %Y A342530 A001055 counts factorizations (strict: A045778, ordered: A074206). %Y A342530 A067824 counts strict chains of divisors ending with n. %Y A342530 A167865 counts strict chains of divisors > 1 summing to n. %Y A342530 A253249 counts strict chains of divisors. %Y A342530 A334997 counts chains of divisors of n by length. %Y A342530 A342495/A342529 count compositions with equal/distinct quotients. %Y A342530 A342496/A342514 count partitions with equal/distinct quotients. %Y A342530 A342515/A342520 count strict partitions with equal/distinct quotients. %Y A342530 A342522/A342521 rank partitions with equal/distinct quotients. %Y A342530 Cf. A000009, A003238, A003242, A122651, A179254, A318991, A318992, A325545. %K A342530 nonn %O A342530 1,2 %A A342530 _Gus Wiseman_, Mar 25 2021