This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342531 #7 Mar 25 2021 12:44:21 %S A342531 1,1,0,1,0,0,1,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,1,0,1, %T A342531 0,0,1,0,2,1,1,0,1,0,0,1,2,1,1,1,1,0,1,0,0,1,1,2,2,1,1,1,0,1,0,0,1,1, %U A342531 2,3,1,1,1,1,0,1,0,0 %N A342531 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with maximal descent k, n >= 0, 0 <= k <= n. %C A342531 The maximal descent of an empty or singleton partition is considered to be 0. %H A342531 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %e A342531 Triangle begins: %e A342531 1 %e A342531 1 0 %e A342531 1 0 0 %e A342531 1 1 0 0 %e A342531 1 0 1 0 0 %e A342531 1 1 0 1 0 0 %e A342531 1 1 1 0 1 0 0 %e A342531 1 1 1 1 0 1 0 0 %e A342531 1 0 2 1 1 0 1 0 0 %e A342531 1 2 1 1 1 1 0 1 0 0 %e A342531 1 1 2 2 1 1 1 0 1 0 0 %e A342531 1 1 2 3 1 1 1 1 0 1 0 0 %e A342531 1 1 3 2 3 1 1 1 1 0 1 0 0 %e A342531 1 1 3 3 3 2 1 1 1 1 0 1 0 0 %e A342531 1 1 3 4 3 3 2 1 1 1 1 0 1 0 0 %e A342531 1 3 3 4 4 3 2 2 1 1 1 1 0 1 0 0 %e A342531 1 0 5 5 5 4 3 2 2 1 1 1 1 0 1 0 0 %e A342531 1 1 4 7 5 5 4 2 2 2 1 1 1 1 0 1 0 0 %e A342531 1 2 5 6 7 6 4 4 2 2 2 1 1 1 1 0 1 0 0 %e A342531 1 1 5 9 7 7 6 4 3 2 2 2 1 1 1 1 0 1 0 0 %e A342531 1 1 6 9 9 7 8 5 4 3 2 2 2 1 1 1 1 0 1 0 0 %e A342531 Row n = 15 counts the following strict partitions (empty columns indicated by dots, A..F = 10..15): %e A342531 F 87 753 96 762 A5 A41 B4 B31 C3 C21 D2 . E1 . . %e A342531 654 6432 852 843 861 9321 A32 %e A342531 54321 6531 7431 951 942 %e A342531 7521 8421 %t A342531 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&If[Length[#]<=1,k==0,Max[Differences[Reverse[#]]]==k]&]],{n,0,15},{k,0,n}] %Y A342531 The non-strict version is A238353. %Y A342531 A000041 counts partitions (strict: A000009). %Y A342531 A049980 counts strict partitions with equal differences. %Y A342531 A325325 counts partitions with distinct differences (ranking: A325368). %Y A342531 A325545 counts compositions with distinct differences. %Y A342531 Cf. A003114, A003242, A005117, A034296, A049988, A238710, A342098, A342514. %K A342531 nonn,tabl %O A342531 0,39 %A A342531 _Gus Wiseman_, Mar 25 2021