This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342532 #11 Apr 17 2021 03:43:36 %S A342532 1,0,1,2,3,4,9,14,28,44,83,136,250,424,757,1310,2313,4018,7081,12314, %T A342532 21650,37786,66264,115802,202950,354858,621525,1087252,1903668, %U A342532 3330882,5831192,10204250,17862232,31260222,54716913,95762576,167614445,293356422,513456686 %N A342532 Number of even-length compositions of n with alternating parts distinct. %C A342532 These are finite even-length sequences q of positive integers summing to n such that q(i) != q(i+2) for all possible i. %H A342532 Andrew Howroyd, <a href="/A342532/b342532.txt">Table of n, a(n) for n = 0..500</a> %F A342532 G.f.: 1 + Sum_{k>=1} B_k(x)^2 where B_k(x) is the g.f. of column k of A106351. - _Andrew Howroyd_, Apr 16 2021 %e A342532 The a(2) = 1 through a(7) = 14 compositions: %e A342532 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) %e A342532 (2,1) (2,2) (2,3) (2,4) (2,5) %e A342532 (3,1) (3,2) (3,3) (3,4) %e A342532 (4,1) (4,2) (4,3) %e A342532 (5,1) (5,2) %e A342532 (1,1,2,2) (6,1) %e A342532 (1,2,2,1) (1,1,2,3) %e A342532 (2,1,1,2) (1,1,3,2) %e A342532 (2,2,1,1) (1,2,3,1) %e A342532 (1,3,2,1) %e A342532 (2,1,1,3) %e A342532 (2,3,1,1) %e A342532 (3,1,1,2) %e A342532 (3,2,1,1) %t A342532 qdq[q_]:=And@@Table[q[[i]]!=q[[i+2]],{i,Length[q]-2}]; %t A342532 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],EvenQ[Length[#]]&],qdq]],{n,0,15}] %o A342532 (PARI) \\ here gf gives A106351 as g.f. %o A342532 gf(n, y)={1/(1 - sum(k=1, n, (-1)^(k+1)*x^k*y^k/(1-x^k) + O(x*x^n)))} %o A342532 seq(n)={my(p=gf(n,y)); Vec(sum(k=0, n\2, polcoef(p,k,y)^2))} \\ _Andrew Howroyd_, Apr 16 2021 %Y A342532 The strictly decreasing version appears to be A064428 (odd-length: A001522). %Y A342532 The equal version is A065608 (A342527 with odds). %Y A342532 The weakly decreasing version is A114921 (A342528 with odds). %Y A342532 Including odds gives A224958. %Y A342532 A000726 counts partitions with alternating parts unequal. %Y A342532 A325545 counts compositions with distinct first differences. %Y A342532 A342529 counts compositions with distinct first quotients. %Y A342532 Cf. A000009, A000041, A003242, A008965, A032020, A059966, A062968, A064410, A070211, A106351, A175342, A325546. %K A342532 nonn %O A342532 0,4 %A A342532 _Gus Wiseman_, Mar 28 2021 %E A342532 Terms a(24) and beyond from _Andrew Howroyd_, Apr 16 2021