cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342541 a(n) = Sum_{k=1..n} phi(gcd(k, n))^(n/gcd(k, n)).

This page as a plain text file.
%I A342541 #17 Mar 20 2021 11:35:16
%S A342541 1,2,4,5,8,10,12,14,28,28,20,62,24,54,272,68,32,198,36,676,1224,130,
%T A342541 44,1348,4136,180,3540,3426,56,12632,60,1640,22520,304,129456,22370,
%U A342541 72,378,101808,270952,80,192996,84,40630,1867184,550,92,551528,1679700,4198860,2105408
%N A342541 a(n) = Sum_{k=1..n} phi(gcd(k, n))^(n/gcd(k, n)).
%H A342541 Seiichi Manyama, <a href="/A342541/b342541.txt">Table of n, a(n) for n = 1..5000</a>
%F A342541 a(n) = Sum_{d|n} phi(n/d) * phi(d)^(n/d).
%F A342541 If p is prime, a(p) = 2 *(p-1).
%t A342541 a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^(n/#) &]; Array[a, 50] (* _Amiram Eldar_, Mar 15 2021 *)
%o A342541 (PARI) a(n) = sum(k=1, n, eulerphi(gcd(k, n))^(n/gcd(k, n)));
%o A342541 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^(n/d));
%Y A342541 Cf. A000010, A029935, A342485, A342539, A342542, A342543.
%K A342541 nonn
%O A342541 1,2
%A A342541 _Seiichi Manyama_, Mar 15 2021