cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342544 a(n) = Sum_{k=1..n} phi(gcd(k, n))^(gcd(k, n) - 1).

This page as a plain text file.
%I A342544 #17 Mar 19 2021 07:00:48
%S A342544 1,2,6,11,260,40,46662,16398,1679630,262408,10000000010,4194366,
%T A342544 8916100448268,13060740684,4398046511640,35184372105244,
%U A342544 18446744073709551632,16926661124436,39346408075296537575442,144115188076118572,3833759992447475215524,1000000000010000000020
%N A342544 a(n) = Sum_{k=1..n} phi(gcd(k, n))^(gcd(k, n) - 1).
%H A342544 Seiichi Manyama, <a href="/A342544/b342544.txt">Table of n, a(n) for n = 1..388</a>
%F A342544 a(n) = Sum_{d|n} phi(n/d) * phi(d)^(d-1).
%F A342544 If p is prime, a(p) = p-1 + (p-1)^(p-1).
%t A342544 a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^(# - 1) &]; Array[a, 20] (* _Amiram Eldar_, Mar 15 2021 *)
%o A342544 (PARI) a(n) = sum(k=1, n, eulerphi(gcd(k, n))^(gcd(k, n)-1));
%o A342544 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^(d-1));
%Y A342544 Cf. A000010, A029935, A309369, A342436, A342540, A342542, A342543.
%K A342544 nonn
%O A342544 1,2
%A A342544 _Seiichi Manyama_, Mar 15 2021