This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342545 #29 Apr 09 2021 09:22:35 %S A342545 2,24,16,280,216,3430,4096,19683,100000,4348377,2985984,154457888, %T A342545 105413504,4442343750,4294967296,313909084845,198359290368, %U A342545 8712567840033,10240000000000,500396429346030,584318301411328,38112390316557080,36520347436056576,298023223876953125 %N A342545 a(n)^2 is the least square that has exactly n 0's in base n. %H A342545 Chai Wah Wu, <a href="/A342545/b342545.txt">Table of n, a(n) for n = 2..702</a> %F A342545 a(2*n) = A062971(n) = 2*A193678(n). %e A342545 n a(n) a(n)^2 in base n %e A342545 2 2 4 100 %e A342545 3 24 576 210100 %e A342545 4 16 256 10000 %e A342545 5 280 78400 10002100 %e A342545 6 216 46656 1000000 %e A342545 7 3430 11764900 202000000 %e A342545 8 4096 16777216 100000000 %e A342545 9 19683 387420489 1000000000 %e A342545 10 100000 10000000000 10000000000 %e A342545 11 4348377 18908382534129 6030000000000 %e A342545 12 2985984 8916100448256 1000000000000 %o A342545 (PARI) for(b=2,12,for(k=1,oo,my(s=k^2,v=digits(s,b));if(sum(k=1,#v,v[k]==0)==b,print1(k,", ");break))) %o A342545 (Python) %o A342545 from numba import njit %o A342545 @njit # works with 64 bits through a(14) %o A342545 def digits0(n, b): %o A342545 count0 = 0 %o A342545 while n >= b: %o A342545 n, r = divmod(n, b) %o A342545 count0 += (r==0) %o A342545 return count0 + (n==0) %o A342545 from sympy import integer_nthroot %o A342545 def a(n): %o A342545 an = integer_nthroot(n**n, 2)[0] %o A342545 while digits0(an*an, n) != n: an += 1 %o A342545 return an %o A342545 print([a(n) for n in range(2, 13)]) # _Michael S. Branicky_, Apr 07 2021 %o A342545 (Python) %o A342545 from itertools import product %o A342545 from functools import reduce %o A342545 from sympy.utilities.iterables import multiset_permutations %o A342545 from sympy import integer_nthroot %o A342545 def A342545(n): %o A342545 for a in range(1,n): %o A342545 p, q = integer_nthroot(a*n**n,2) %o A342545 if q: return p %o A342545 l = 1 %o A342545 while True: %o A342545 cmax = n**(l+n+1) %o A342545 for a in range(1,n): %o A342545 c = cmax %o A342545 for b in product(range(1,n),repeat=l): %o A342545 for d in multiset_permutations((0,)*n+b): %o A342545 p, q = integer_nthroot(reduce(lambda c, y: c*n+y, [a]+d),2) %o A342545 if q: c = min(c,p) %o A342545 if c < cmax: %o A342545 return c %o A342545 l += 1 # _Chai Wah Wu_, Apr 07 2021 %Y A342545 Cf. A000290, A062971, A193678, A342260, A342546. %K A342545 nonn,base %O A342545 2,1 %A A342545 _Hugo Pfoertner_, Apr 07 2021 %E A342545 More terms from _Chai Wah Wu_, Apr 07 2021