This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342546 #28 May 30 2021 12:59:47 %S A342546 3,7,73,141,1417,17130,11677,187955,10252371,20440221,1550384575, %T A342546 10645648530,80224807014,829050923579,17071371319785,599574561430568 %N A342546 a(n)^2 is the least square with exactly n 1's in base n. %e A342546 n a(n) a(n)^2 in base n %e A342546 2 3 9 1001 %e A342546 3 7 49 1211 %e A342546 4 73 5329 1103101 %e A342546 5 141 19881 1114011 %e A342546 6 1417 2007889 111011441 %e A342546 7 17130 293436900 10162113111 %e A342546 8 11677 136352329 1010111111 %e A342546 9 187955 35327082025 111160121111 %e A342546 10 10252371 105111111121641 105111111121641 %o A342546 (PARI) for(b=2,10,for(k=1,oo,my(s=k^2,d=digits(s,b));if(sum(k=1,#d,d[k]==1)==b,print1(k,", ");break))) %o A342546 (Python) %o A342546 from sympy import integer_nthroot %o A342546 from numba import njit %o A342546 @njit # works with 64 bits through a(12) %o A342546 def digits1(n, b): %o A342546 count1 = 0 %o A342546 while n >= b: %o A342546 n, r = divmod(n, b) %o A342546 count1 += (r==1) %o A342546 return count1 + (n==1) %o A342546 def a(n): %o A342546 an = integer_nthroot(n**(n-1), 2)[0] + 1 %o A342546 while digits1(an*an, n) != n: an += 1 %o A342546 return an %o A342546 print([a(n) for n in range(2, 10)]) # _Michael S. Branicky_, Apr 07 2021 %Y A342546 Cf. A000290, A342260, A342545. %K A342546 nonn,base,more %O A342546 2,1 %A A342546 _Hugo Pfoertner_, Apr 07 2021 %E A342546 a(14) from _Chai Wah Wu_, Apr 14 2021 %E A342546 a(15)-a(16) from _Giovanni Resta_, Apr 17 2021 %E A342546 a(17) from _Martin Ehrenstein_, May 29 2021