A342573 The number of ordered n-tuples consisting of n permutations (not necessarily distinct) such that the first element of each of them is the same.
1, 2, 24, 5184, 39813120, 17915904000000, 702142910300160000000, 3330690501757390081228800000000, 2534703826002712645182542460223488000000000, 395940866122425193243875570782668457763038822400000000000
Offset: 1
Keywords
Examples
When n=3, we have 3 ways to fix the first element, and the remaining elements in each permutation can be in any order, yielding (3 - 1)! possible ways of ordering the rest of each permutation, so there are 3 * (2!)^3 = 24 sets of permutations.
Links
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
Programs
-
Mathematica
Table[n (n - 1)!^n, {n, 10}]
Formula
a(n) = n*(n-1)!^n = n*A091868(n-1).
Comments