This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342576 #36 Mar 12 2024 22:52:14 %S A342576 1,4,4,4,5,8,13,14,14,16,22,24,29,33,36,40,47,52,58,63,68 %N A342576 Independent domination number for knight graph on an n X n board. %D A342576 Sandra M. Hedetniemi, Stephen T. Hedetniemi, Robert Reynolds, Combinatorial Problems on Chessboards: II, in: Domination in Graphs - Advanced Topics, Marcel Dekker, 1998. See p. 141. %H A342576 Andy Huchala, <a href="/A342576/a342576.py.txt">Python program</a>. %H A342576 Robert Israel, <a href="/A342576/a342576.pdf">Optimal configurations for n = 3 to 14</a> %H A342576 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KnightGraph.html">Knight Graph</a>. %H A342576 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LowerIndependenceNumber.html">Lower Independence Number</a>. %p A342576 f:= proc(N) %p A342576 local verts,Rverts,edg,cons,i,j,e; %p A342576 verts:= [seq(seq([i,j],i=1..N),j=1..N)]: %p A342576 for i from 1 to N^2 do Rverts[op(verts[i])]:= i od: %p A342576 edg:= {seq(seq({Rverts[i,j],Rverts[i+1,j+2]},i=1..N-1),j=1..N-2), %p A342576 seq(seq({Rverts[i,j],Rverts[i+2,j+1]},i=1..N-2),j=1..N-1), %p A342576 seq(seq({Rverts[i,j],Rverts[i+1,j-2]},i=1..N-1),j=3..N), %p A342576 seq(seq({Rverts[i,j],Rverts[i+2,j-1]},i=1..N-2),j=2..N)}: %p A342576 cons:= {seq(x[e[1]]+x[e[2]]<=1, e=edg), %p A342576 seq(x[i]+add(`if`(member({i,j},edg),x[j],0),j=1..N^2)>=1, i=1..N^2)}: %p A342576 Optimization:-Minimize(add(x[i],i=1..N^2),cons,assume=binary)[1] %p A342576 end proc: %p A342576 map(f, [$1..13]); # _Robert Israel_, Mar 17 2021 %Y A342576 Cf. A006075, A075324, A299029, A279404, A030978. %K A342576 nonn,more %O A342576 1,2 %A A342576 _Andrey Zabolotskiy_, Mar 15 2021 %E A342576 a(11) to a(14) from _Robert Israel_, Mar 17 2021 %E A342576 a(15)-a(18) from _Eric W. Weisstein_, Aug 01 2023 %E A342576 a(19) from _Eric W. Weisstein_, Jan 14 2024 %E A342576 a(20)-a(21) from _Andy Huchala_, Mar 10 2024