This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342578 #20 Jul 15 2021 03:10:35 %S A342578 1,1,3,199,249337,6062674201,3653786369479951,65709007885111803731947, %T A342578 40564683796482484146182142025377, %U A342578 969773549559254966290998252899999751714721,999999990999996719397362087568018696141879478712251051,49037072510879011742983689973641327840345400616866967292640434759551 %N A342578 a(n) = n! * [x^n] (Sum_{j>=0} n^(j*(j+1)/2) * x^j/j!)^(1/n) for n > 0, a(0) = 1. %C A342578 All terms are odd. %H A342578 Alois P. Heinz, <a href="/A342578/b342578.txt">Table of n, a(n) for n = 0..35</a> %H A342578 Richard Stanley, <a href="https://mathoverflow.net/q/385402">Proof of the general conjecture</a>, MathOverflow, March 2021. %F A342578 a(n) == 1 (mod n*(n-1)) for n >= 2 (see "general conjecture" in A178319 and link to proof by _Richard Stanley_ above). %F A342578 a(n) ~ n^((n^2 + n - 2)/2). - _Vaclav Kotesovec_, Jul 15 2021 %p A342578 a:= n-> `if`(n>0, coeff(series(add(n^binomial(j+1, 2)* %p A342578 x^j/j!, j=0..n)^(1/n), x, n+1), x, n)*n!, 1): %p A342578 seq(a(n), n=0..12); %Y A342578 Cf. A000217, A023813, A178315, A178319. %Y A342578 Main diagonal of A346061. %K A342578 nonn %O A342578 0,3 %A A342578 _Alois P. Heinz_, Mar 15 2021