cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342604 a(n) = Sum_{j=1..n} A003718(j-1)*prime(j).

Original entry on oeis.org

2, 5, 10, 17, 39, 52, 69, 126, 195, 224, 255, 403, 649, 821, 868, 921, 1216, 1826, 2496, 2851, 2924, 3003, 3501, 4836, 6776, 8291, 8909, 9016, 9125, 9916, 12583, 17168, 21963, 24882, 25925, 26076, 26233, 27537, 32213, 41901, 54431, 64567, 69915, 71459, 71656, 71855, 73754, 81782, 100850, 129704
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 16 2021

Keywords

Examples

			a(3) = A003718(0)*prime(1) + A003718(1)*prime(2) + A003718(2)*prime(3) = 1*2 + 1*3 + 1*5 = 10.
		

Crossrefs

Programs

  • Maple
    p:= 1: R:= NULL:
    for n from 0 to 14 do
      for k from 0 to n do
        p:= nextprime(p);
        R:= R, binomial(n,k)*p
    od od:
    ListTools:-PartialSums([R]):

A342605 Numbers k such that A342604(k) is prime.

Original entry on oeis.org

1, 2, 4, 14, 20, 26, 31, 39, 42, 57, 64, 69, 87, 92, 114, 127, 150, 152, 172, 213, 274, 301, 326, 379, 436, 460, 499, 523, 597, 708, 747, 817, 819, 912, 1382, 1452, 1595, 1600, 1603, 1632, 1647, 1670, 1768, 1833, 1834, 1873, 1890, 1986, 2137, 2696, 2702, 2859, 3080, 3154, 3167, 3173, 3386, 3933
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 16 2021

Keywords

Examples

			a(3) = 4 is a term because A342604(4) = 17 is prime.
		

Crossrefs

Programs

  • Maple
    p:= 1: R:= NULL:
    for n from 0 to 14 do
      for k from 0 to n do
        p:= nextprime(p);
        R:= R, binomial(n,k)*p
    od od:
    S:= ListTools:-PartialSums([R]):
    select(t -> isprime(S[t]), [$1..nops(S)]);

Formula

A342604(a(n)) = A342606(n).
Showing 1-2 of 2 results.