This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342632 #46 Sep 04 2021 15:50:11 %S A342632 1,3,11,43,159,647,2519,10043,39895,159703,637927,2551171,10200039, %T A342632 40803219,163198675,652774767,2611029851,10444211447,41776529287, %U A342632 167106121619,668423198491,2673693100831,10694768891659,42779072149475,171116268699455,684465093334979,2737860308070095 %N A342632 Number of ordered pairs (x, y) with gcd(x, y) = 1 and 1 <= {x, y} <= 2^n. %H A342632 Chai Wah Wu, <a href="/A342632/b342632.txt">Table of n, a(n) for n = 0..45</a> %H A342632 Joachim von zur Gathen and Jürgen Gerhard, <a href="/A342586/a342586_1.pdf">Extract from "3.4. (Non-)Uniqueness of the gcd" chapter</a>, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54. %F A342632 Lim_{n->infinity} a(n)/2^(2*n) = 6/Pi^2 = 1/zeta(2). %e A342632 Only fractions with gcd(numerator, denominator) = 1 are counted. E.g., %e A342632 1/2 counts, but 2/4, 3/6, 4/8 ... do not, because they reduce to 1/2; %e A342632 1/1 counts, but 2/2, 3/3, 4/4 ... do not, because they reduce to 1/1. %e A342632 . %e A342632 For n=0, the size of the grid is 1 X 1: %e A342632 . %e A342632 | 1 %e A342632 --+-- %e A342632 1 | o Sum: 1 %e A342632 . %e A342632 For n=1, the size of the grid is 2 X 2: %e A342632 . %e A342632 | 1 2 %e A342632 --+---- %e A342632 1 | o o 2 %e A342632 2 | o . 1 %e A342632 -- %e A342632 Sum: 3 %e A342632 . %e A342632 For n=2, the size of the grid is 4 X 4: %e A342632 . %e A342632 | 1 2 3 4 %e A342632 --+-------- %e A342632 1 | o o o o 4 %e A342632 2 | o . o . 2 %e A342632 3 | o o . o 3 %e A342632 4 | o . o . 2 %e A342632 -- %e A342632 Sum: 11 %e A342632 . %e A342632 For n=3, the size of the grid is 8 X 8: %e A342632 . %e A342632 | 1 2 3 4 5 6 7 8 %e A342632 --+---------------- %e A342632 1 | o o o o o o o o 8 %e A342632 2 | o . o . o . o . 4 %e A342632 3 | o o . o o . o o 6 %e A342632 4 | o . o . o . o . 4 %e A342632 5 | o o o o . o o o 7 %e A342632 6 | o . . . o . o . 3 %e A342632 7 | o o o o o o . o 7 %e A342632 8 | o . o . o . o . 4 %e A342632 -- %e A342632 Sum: 43 %o A342632 (Python) %o A342632 import math %o A342632 for n in range (0, 21): %o A342632 counter = 0 %o A342632 for x in range (1, pow(2, n)+1): %o A342632 for y in range(1, pow(2, n)+1): %o A342632 if math.gcd(y, x) == 1: %o A342632 counter += 1 %o A342632 print(n, counter) %o A342632 (PARI) for(n=0,24,my(j=2^n);print1(2*sum(k=1,j,eulerphi(k))-1,", ")) \\ _Hugo Pfoertner_, Mar 17 2021 %o A342632 (Python) %o A342632 from sympy import sieve %o A342632 def A342632(n): return 2*sum(t for t in sieve.totientrange(1,2**n+1)) - 1 # _Chai Wah Wu_, Mar 23 2021 %o A342632 (Python) %o A342632 from functools import lru_cache %o A342632 @lru_cache(maxsize=None) %o A342632 def A018805(n): %o A342632 if n == 1: return 1 %o A342632 return n*n - sum(A018805(n//j) for j in range(2, n//2+1)) - (n+1)//2 %o A342632 print([A018805(2**n) for n in range(25)]) # _Michael S. Branicky_, Mar 23 2021 %Y A342632 a(n) = A018805(2^n). %Y A342632 Cf. A000010, A002088, A059956 (6/Pi^2), A064018, A342586. %K A342632 nonn %O A342632 0,2 %A A342632 _Karl-Heinz Hofmann_, Mar 17 2021 %E A342632 Edited by _N. J. A. Sloane_, Jun 13 2021