cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342639 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = g(f(n) + f(k)) where g maps the complement, say s, of a finite set of nonnegative integers to the value Sum_{e >= 0 not in s} 2^e, f is the inverse of g, and "+" denotes the Minkowski sum.

This page as a plain text file.
%I A342639 #12 Mar 20 2021 14:37:21
%S A342639 0,1,1,0,3,0,3,1,1,3,0,7,2,7,0,1,1,3,3,1,1,0,3,0,15,0,3,0,7,1,5,3,3,5,
%T A342639 1,7,0,15,2,7,0,7,2,15,0,1,1,7,3,1,1,3,7,1,1,0,3,0,31,4,11,4,31,0,3,0,
%U A342639 3,1,1,3,7,5,5,7,3,1,1,3,0,7,2,7,0,15,6,15,0,7,2,7,0
%N A342639 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = g(f(n) + f(k)) where g maps the complement, say s, of a finite set of nonnegative integers to the value Sum_{e >= 0 not in s} 2^e, f is the inverse of g, and "+" denotes the Minkowski sum.
%C A342639 In other words:
%C A342639 - we consider the set S of sets s of nonnegative integers whose complement is finite,
%C A342639 - the function g encodes the "missing integers" in binary:
%C A342639           g(A001477 \ {1, 4}) = 2^1 + 2^4 = 18
%C A342639 - the function f is the inverse of g:
%C A342639           f(42) = f(2^1 + 2^3 + 2^5) = A001477 \ {1, 3, 5},
%C A342639 - the Minkowski sum of two sets, say U and V, is the set of sums u+v where u belongs to U and v belongs to V,
%C A342639 - the Minkowski sum is stable over S,
%C A342639 - and T provides an encoding for this operation.
%C A342639 This sequence has connections with A067138; here we consider complements of finite sets of nonnegative integers, there finite sets of nonnegative integers.
%H A342639 Rémy Sigrist, <a href="/A342639/b342639.txt">Table of n, a(n) for n = 0..10010</a>
%H A342639 Wikipedia, <a href="https://en.wikipedia.org/wiki/Minkowski_addition">Minkowski addition</a>
%F A342639 T(n, k) = T(k, n).
%F A342639 T(m, T(n, k)) = T(T(m, n), k).
%F A342639 T(n, 0) = A135481(n).
%F A342639 T(n, 1) = A038712(n+1).
%F A342639 T(2^n-1, 2^k-1) = 2^(n+k)-1.
%F A342639 T(n, n) = A342640(n).
%e A342639 Array T(n, k) begins:
%e A342639   n\k|   0   1   2   3   4   5   6    7   8   9  10  11  12  13  14   15
%e A342639   ---+------------------------------------------------------------------
%e A342639     0|   0   1   0   3   0   1   0    7   0   1   0   3   0   1   0   15
%e A342639     1|   1   3   1   7   1   3   1   15   1   3   1   7   1   3   1   31
%e A342639     2|   0   1   2   3   0   5   2    7   0   1   2  11   0   5   2   15
%e A342639     3|   3   7   3  15   3   7   3   31   3   7   3  15   3   7   3   63
%e A342639     4|   0   1   0   3   0   1   4    7   0   1   0   3   0   9   4   15
%e A342639     5|   1   3   5   7   1  11   5   15   1   3   5  23   1  11   5   31
%e A342639     6|   0   1   2   3   4   5   6    7   0   9   2  11   4  13   6   15
%e A342639     7|   7  15   7  31   7  15   7   63   7  15   7  31   7  15   7  127
%e A342639     8|   0   1   0   3   0   1   0    7   0   1   0   3   0   1   8   15
%e A342639     9|   1   3   1   7   1   3   9   15   1   3   1   7   1  19   9   31
%e A342639    10|   0   1   2   3   0   5   2    7   0   1  10  11   0   5  10   15
%e A342639    11|   3   7  11  15   3  23  11   31   3   7  11  47   3  23  11   63
%e A342639    12|   0   1   0   3   0   1   4    7   0   1   0   3   8   9  12   15
%e A342639    13|   1   3   5   7   9  11  13   15   1  19   5  23   9  27  13   31
%e A342639    14|   0   1   2   3   4   5   6    7   8   9  10  11  12  13  14   15
%e A342639    15|  15  31  15  63  15  31  15  127  15  31  15  63  15  31  15  255
%o A342639 (PARI) T(n,k) = { my (v=0); for (x=0, #binary(n)+#binary(k), my (f=0); for (y=0, x, if (!bittest(n,y) && !bittest(k,x-y), f=1; break)); if (!f, v+=2^x)); return (v) }
%Y A342639 Cf. A038712, A067138, A133457, A135481, A342640, A342641, A342642.
%K A342639 nonn,tabl,base
%O A342639 0,5
%A A342639 _Rémy Sigrist_, Mar 17 2021