This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342645 #25 Aug 12 2022 19:10:03 %S A342645 1,-1,1,-2,-1,1,0,-7,0,1,0,-14,-13,2,1,120,-46,-65,-15,5,1,0,516,-356, %T A342645 -165,-5,9,1,5040,1392,266,-1421,-280,28,14,1,0,46320,3772,-5740, %U A342645 -3871,-280,98,20,1,0,215280,212724,-26272,-31437,-7791,126,222,27,1 %N A342645 Triangle read by rows: T(n,k) gives n! times the coefficient of x^k in the polynomial that describes the number of permutations on x letters with major index n. %C A342645 This n-th row describes a polynomial that eventually agrees with the n-th column of A008302. %C A342645 Conjecture: For each m, T(n,n-m) is a polynomial of degree 2m whose leading coefficient is abs(A290030(m)/A053657(m+1)). %H A342645 Peter Kagey, <a href="/A342645/b342645.txt">Rows n = 0..100, flattened</a> %H A342645 Mike Earnest, <a href="https://math.stackexchange.com/a/4065913/121988">Does the number of permutations in S_n with major index equal to k, satisfy a degree k polynomial?</a>, Mathematics Stack Exchange answer. %F A342645 Conjectures: %F A342645 T(n,n) = 1. %F A342645 T(n,n-1) = (-3n + n^2)/2. %F A342645 T(n,n-2) = (-2n + 21n^2 - 22n^3 + 3n^4)/24. %F A342645 T(n,n-3) = (96n - 134n^2 + 13n^3 + 37n^4 - 13n^5 + n^6)/48. %e A342645 n\k | 0 1 2 3 4 5 6 7 8 9 %e A342645 ----+-------------------------------------------------------------- %e A342645 0 | 1; %e A342645 1 | -1, 1; %e A342645 2 | -2, -1, 1; %e A342645 3 | 0, -7, 0, 1; %e A342645 4 | 0, -14, -13, 2, 1; %e A342645 5 | 120, -46, -65, -15, 5, 1; %e A342645 6 | 0, 516, -356, -165, -5, 9, 1; %e A342645 7 | 5040, 1392, 266, -1421, -280, 28, 14, 1; %e A342645 8 | 0, 46320, 3772, -5740, -3871, -280, 98, 20, 1; %e A342645 9 | 0, 215280, 212724, -26272, -31437, -7791, 126, 222, 27, 1; %e A342645 For n = 4, the polynomial that describes the 4th column of A008302 is %e A342645 A008302(x,4) = (-14x -13x^2 +2x^3 + x^4)/4! = Sum_{j=0..4} (T(j,4)*x^j)/4!. %t A342645 A008302T[0, 0] := 1; A008302T[-1, k_] := 0; %t A342645 A008302T[n_, k_] := (A008302T[n, k] = If[0 <= k <= n*(n - 1)/2, A008302T[n, k - 1] + A008302T[n - 1, k] - A008302T[n - 1, k - n], 0]); %t A342645 A342645Row[n_] := (A342645Row[n] = Expand[n!*InterpolatingPolynomial[Table[{m, A008302T[m, n]}, {m, n, 2*n + 2}], x]]); %t A342645 A342645T[n_, k_] := Coefficient[A342645Row[n], x, k]; %Y A342645 Cf. A008302, A053657, A290030. %K A342645 sign,tabl %O A342645 0,4 %A A342645 _Peter Kagey_, Mar 17 2021