cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342652 a(n) = A331410(A156552(n)).

This page as a plain text file.
%I A342652 #9 Mar 18 2021 22:58:12
%S A342652 0,0,1,0,2,0,1,1,2,0,2,0,3,2,3,0,2,0,3,2,3,0,2,1,4,1,3,0,2,0,1,3,4,2,
%T A342652 3,0,5,3,3,0,4,0,4,2,6,0,2,1,4,4,4,0,4,2,3,4,7,0,3,0,7,3,3,3,3,0,5,5,
%U A342652 3,0,4,0,8,2,5,2,4,0,3,3,8,0,5,3,11,6,5,0,4,2,5,7,8,4,5,0,2,3,4,0,6,0,4,2
%N A342652 a(n) = A331410(A156552(n)).
%C A342652 Positions of ones is given by a subsequence of A053810, i.e., prime powers whose exponent is one of the primes in A000043. See also A324201, A335431.
%H A342652 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A342652 a(n) = A331410(A156552(n)).
%F A342652 a(p) = 0 for all primes p.
%F A342652 a(A003961(n)) = a(n).
%o A342652 (PARI)
%o A342652 A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
%o A342652 A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
%o A342652 A342652(n) = A331410(A156552(n));
%Y A342652 Cf. A000043, A003961, A053810, A156552, A324201, A331410, A335431, A342651.
%K A342652 nonn
%O A342652 2,5
%A A342652 _Antti Karttunen_, Mar 18 2021