This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342666 #9 Jan 29 2022 20:15:03 %S A342666 1,1,1,1,1,1,3,1,1,1,5,1,1,1,1,1,3,1,9,1,5,1,11,1,3,3,3,1,3,1,15,1,21, %T A342666 1,1,1,1,5,3,1,9,1,33,5,9,1,23,1,1,3,65,1,7,1,35,21,5,1,21,1,341,9,3, %U A342666 1,11,1,27,1,5,1,5,1,15,3,51,1,27,1,39,1,1365,1,1,5,49,9,1,1,1,1,117,5,825,3,9,1,9,3,1,1,7,1 %N A342666 a(n) = A336466(A156552(n)). %H A342666 Antti Karttunen, <a href="/A342666/b342666.txt">Table of n, a(n) for n = 2..10000</a> (based on Hans Havermann's factorization of A156552) %H A342666 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A342666 a(n) = A336466(A156552(n)) = A336466(A322993(n)). %F A342666 a(p) = 1 for all primes p. %F A342666 a(A003961(n)) = a(n). %o A342666 (PARI) %o A342666 A000265(n) = (n>>valuation(n,2)); %o A342666 A336466(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]-1))^f[k,2])); }; %o A342666 A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; %o A342666 A342666(n) = A336466(A156552(n)); %o A342666 (PARI) %o A342666 \\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt %o A342666 v156552sigs = readvec("a156552.txt"); %o A342666 A000265(n) = (n>>valuation(n,2)); %o A342666 A342666(n) = if(isprime(n),1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,A000265(ps[i]-1)^es[i])); \\ _Antti Karttunen_, Jan 29 2022 %Y A342666 Cf. A000265, A003961, A156552, A322993, A336466. %Y A342666 Cf. also A324104, A342651, A342656, A350067. %K A342666 nonn %O A342666 2,7 %A A342666 _Antti Karttunen_, Mar 18 2021