This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342674 #8 Mar 28 2021 15:53:42 %S A342674 1,1,2,36,1,2,5,120,1,4,2,4,336,19,2,36,8,4,264,1,2,24,30,56,8,1092,1, %T A342674 2,1,12,28,56,4,612,1,4,9,11,12,418,8,20,2280,1,6,2,10,1,48,26,8,20, %U A342674 5520,1,2,4,4,266,1,48,34,24,40,6960,1,2,180,4,42,308,1,12,76,24,60,1984,3,2,18,240,4,798,26,1,20,138,12,4,2812,1,2 %N A342674 Square array A(n,k) = A341530(A246278(n,k)), read by falling antidiagonals; A341530 as applied onto prime shift array A246278. %H A342674 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A342674 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A342674 A(n,k) = A341530(A246278(n,k)). %e A342674 The top left corner of the array: %e A342674 k = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A342674 2k = 2 4 6 8 10 12 14 16 18 20 22 24 26 28 %e A342674 | %e A342674 -----+-------------------------------------------------------------------------- %e A342674 n= 1 | 1, 1, 36, 5, 2, 36, 24, 1, 9, 2, 4, 180, 18, 168, %e A342674 2 | 2, 1, 120, 4, 8, 30, 12, 11, 10, 4, 4, 240, 360, 6, %e A342674 3 | 2, 1, 336, 4, 56, 28, 12, 1, 266, 42, 4, 672, 120, 2, %e A342674 4 | 4, 19, 264, 8, 56, 418, 48, 1, 308, 798, 32, 528, 24, 38, %e A342674 5 | 2, 1, 1092, 4, 8, 26, 48, 1, 26, 6, 12, 37128, 8, 76, %e A342674 6 | 2, 1, 612, 20, 8, 34, 12, 1, 34, 12, 12, 6120, 4, 6, %e A342674 7 | 2, 1, 2280, 20, 24, 76, 20, 1, 38, 6, 152, 4560, 12, 6, %e A342674 8 | 4, 1, 5520, 40, 24, 138, 16, 1, 92, 2, 152, 11040, 24, 2, %e A342674 9 | 6, 1, 6960, 60, 12, 58, 12, 1, 174, 2, 24, 13920, 96, 14, %e A342674 10 | 2, 1, 1984, 4, 12, 62, 4, 1, 186, 2, 24, 146816, 288, 6, %e A342674 11 | 2, 3, 2812, 4, 8, 222, 32, 11, 74, 42, 12, 5624, 24, 12, %e A342674 12 | 2, 1, 3444, 4, 8, 82, 12, 1, 82, 12, 36, 6888, 12, 18, %o A342674 (PARI) %o A342674 up_to = 91; %o A342674 A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961 %o A342674 A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); }; %o A342674 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A342674 A342674sq(row,col) = A341530(A246278sq(row,col)); %o A342674 A342674list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A342674sq(col,(a-(col-1))))); (v); }; %o A342674 v342674 = A342674list(up_to); %o A342674 A342674(n) = v342674[n]; %Y A342674 Cf. A000203, A003961, A246278, A341530. %Y A342674 Cf. also A341605, A341606, A341626, A341627. %K A342674 nonn,tabl %O A342674 1,3 %A A342674 _Antti Karttunen_, Mar 24 2021