This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342679 #67 May 26 2021 02:48:02 %S A342679 1,1,2,1,2,1,2,2,2,1,3,1,2,2,3,1,4,1,3,2,2,1,2,2,2,2,3,1,3,1,2,2,2,2, %T A342679 3,1,2,2,2,1,3,1,3,3,2,1,2,2,4,2,3,1,2,2,2,2,2,1,2,1,2,3,3,2,3,1,3,2, %U A342679 3,1,3,1,2,4,3,2,3,1,2,3,2,1,2,2,2,2,2,1 %N A342679 Number of steps for n to reach 1 or n by repeated application of A037916, or -1 if they are never reached. %C A342679 Let n = (p1^a1)*(p2^a2)*...*(pk^aj) be the prime-factorization of n >= 2, where primes are in ascending order and ai >= 1 for all i >= 1 and <= k, then form n' = a1 a2 a3 ... ak = A037916(n), the concatenation of the exponents. Repeat this process if n' != 1 and != n, otherwise stop. %C A342679 When n is prime, a(n) = 1; when n is semiprime, a(n) = 2. %C A342679 Does every n reach 1 by this process, or does there exist some n whose trajectory enters a cycle, i.e., we reach n again instead of 1? %C A342679 No cycles for n <= 10^9. - _Michael S. Branicky_, Mar 21 2021 %e A342679 3 = 3^1 -> 1, so a(3) = 1; %e A342679 6 = 2^1 * 3^1 -> 11 = 11^1 -> 1, so a(6) = 2; %e A342679 16 = 2^4 -> 4 = 2^2 -> 2 = 2^1 -> 1, so a(16) = 3; %e A342679 50 = 2^1 * 5^2 -> 12 = 2^2 * 3^1 -> 21 = 3^1 * 7^1 -> 11 -> 1, so a(50) = 4. %t A342679 Table[Length@Rest@Most@FixedPointList[FromDigits[Last/@FactorInteger@#]&,k],{k,2,100}] (* _Giorgos Kalogeropoulos_, Apr 01 2021 *) %o A342679 (Python) %o A342679 import sympy %o A342679 N=int(input()) %o A342679 A342679_n=[] %o A342679 for n in range(2,N+1): %o A342679 n_0=n %o A342679 steps=0 %o A342679 while not sympy.isprime(n) : %o A342679 exponents=list(sympy.factorint(n).values()) %o A342679 m="" %o A342679 for i in exponents: %o A342679 m=m+str(i) %o A342679 n=int(m) %o A342679 if n==n_0: %o A342679 break %o A342679 steps+=1 %o A342679 A342679_n.append(steps+1) %o A342679 print(A342679_n) %o A342679 (Python) %o A342679 def a(n): %o A342679 c, iter = 1, A037916(n) %o A342679 while iter != 1 and iter != n: c, iter = c+1, A037916(iter) %o A342679 return c %o A342679 print([a(n) for n in range(2, 89)]) # _Michael S. Branicky_, Mar 20 2021 %o A342679 (PARI) f(n) = my(f=factor(n)[,2], s=""); for(i=1, #f~, s=concat(s,Str(f[i]))); eval(s); \\ A037916 %o A342679 a(n) = my(k=n, nb=0); while (k != 1, k = f(k); nb++); nb; \\ _Michel Marcus_, Mar 18 2021 %Y A342679 Cf. A000040, A037916. %K A342679 nonn,base %O A342679 2,3 %A A342679 _Devansh Singh_, Mar 18 2021