cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342681 Primes which, when added to their reversals, produce palindromic primes.

This page as a plain text file.
%I A342681 #20 Sep 08 2022 08:46:26
%S A342681 241,443,613,641,811,20011,20047,20051,20101,20161,20201,20347,20441,
%T A342681 20477,21001,21157,21211,21377,21467,22027,22031,22147,22171,22247,
%U A342681 22367,23017,23021,23131,23357,23417,23447,24007,24121,24151,24407,25031,25111,25117,25121,26021,26107,26111,26417,27011,27407,28001
%N A342681 Primes which, when added to their reversals, produce palindromic primes.
%C A342681 It appears that all terms have an odd number of digits. - _Robert Israel_, Mar 24 2021
%H A342681 Robert Israel, <a href="/A342681/b342681.txt">Table of n, a(n) for n = 1..10000</a>
%e A342681 241 is a prime number. The sum with its reverse is 383 = 241+142, which is a palindromic prime. Thus, 241 is in this sequence.
%p A342681 revdigs:= proc(n) local i,L;
%p A342681   L:= convert(n,base,10);
%p A342681   add(L[-i]*10^(i-1),i=1..nops(L))
%p A342681 end proc:
%p A342681 ispali:= proc(n) local L;
%p A342681   L:= convert(n,base,10);
%p A342681   andmap(t -> L[t]=L[-t], [$1..nops(L)/2])
%p A342681 end proc:
%p A342681 filter:= proc(t) local r; r:= t + revdigs(t);
%p A342681   ispali(r) and isprime(r);
%p A342681 end proc:
%p A342681 select(filter, [seq(ithprime(i),i=1..10000)]); # _Robert Israel_, Mar 24 2021
%t A342681 Select[Range[30000], PrimeQ[#] && PrimeQ[# + IntegerReverse[#]] && PalindromeQ[# + IntegerReverse[#]] &]
%o A342681 (PARI) isok(p) = my(q); isprime(p) && isprime(q=p+fromdigits(Vecrev(digits(p)))) && (q==fromdigits(Vecrev(digits(q)))); \\ _Michel Marcus_, Mar 18 2021
%o A342681 (Python)
%o A342681 from sympy import isprime, primerange
%o A342681 def ok(p):
%o A342681   t = p + int(str(p)[::-1]); strt = str(t)
%o A342681   return strt == strt[::-1] and isprime(t)
%o A342681 print([p for p in primerange(1, 28002) if ok(p)]) # _Michael S. Branicky_, Mar 18 2021
%o A342681 (Magma) [p: p in PrimesUpTo(10^6) | IsPrime(t) and Intseq(t) eq Reverse(Intseq(t)) where t is p+Seqint(Reverse(Intseq(p)))]; // _Bruno Berselli_, Mar 23 2021
%Y A342681 Cf. A002385. Subsequence of A061783 (Luhn primes: primes p such that p + (p reversed) is also a prime).
%K A342681 nonn,base
%O A342681 1,1
%A A342681 _Tanya Khovanova_, Mar 18 2021